A perturbed two-parameter boundary value problem is considered for a second-order differential operator on an interval with Dirichlet conditions. The perturbation is described by the potential mu(-1) V((x - x (0))E >(-1)), where 0 < E > a parts per thousand(a) 1 and mu is an arbitrary parameter such that there exists delta > 0 for which E >/mu = o(E >(delta)). It is shown that the eigenvalues of this operator converge, as E > -> 0, to the eigenvalues of the operator with no potential. Complete asymptotic expansions of the eigenvalues and eigenfunctions of the perturbed operator are constructed.
机构:
Sorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, FranceSorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
机构:
NAS Ukraine, Inst Appl Math & Mech, R Luxemburg Str 74, UA-83114 Donetsk, Ukraine
Dublin Inst Technol, Sch Math Sci, Dublin 8, IrelandNAS Ukraine, Inst Appl Math & Mech, R Luxemburg Str 74, UA-83114 Donetsk, Ukraine
Kostenko, Aleksey
Sakhnovich, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Fac Math, A-1090 Vienna, AustriaNAS Ukraine, Inst Appl Math & Mech, R Luxemburg Str 74, UA-83114 Donetsk, Ukraine
Sakhnovich, Alexander
Teschl, Gerald
论文数: 0引用数: 0
h-index: 0
机构:
Fac Math, A-1090 Vienna, Austria
Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, AustriaNAS Ukraine, Inst Appl Math & Mech, R Luxemburg Str 74, UA-83114 Donetsk, Ukraine
机构:
VA STEKLOV MATH INST, POMI, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIAVA STEKLOV MATH INST, POMI, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIA