Perturbed boundary eigenvalue problem for the Schrodinger operator on an interval

被引:3
|
作者
Khusnullin, I. Kh. [1 ]
机构
[1] Bashkir State Pedag Univ, Ufa 450000, Bashkortostan, Russia
基金
俄罗斯基础研究基金会;
关键词
second-order differential operator; singular perturbation; eigenvalue; asymptotics;
D O I
10.1134/S096554251004007X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A perturbed two-parameter boundary value problem is considered for a second-order differential operator on an interval with Dirichlet conditions. The perturbation is described by the potential mu(-1) V((x - x (0))E >(-1)), where 0 < E > a parts per thousand(a) 1 and mu is an arbitrary parameter such that there exists delta > 0 for which E >/mu = o(E >(delta)). It is shown that the eigenvalues of this operator converge, as E > -> 0, to the eigenvalues of the operator with no potential. Complete asymptotic expansions of the eigenvalues and eigenfunctions of the perturbed operator are constructed.
引用
收藏
页码:646 / 664
页数:19
相关论文
共 50 条