Gene expression profiling of gliomas strongly predicts survival

被引:569
|
作者
Freije, WA
Castro-Vargas, FE
Fang, ZX
Horvath, S
Cloughesy, T
Liau, LM
Mischel, PS
Nelson, SF
机构
[1] Univ Calif Los Angeles, Ctr Med, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Obstet & Gynecol, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biostat, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Henry E Singleton Brain Tumor Program, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Div Neurosurg, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol, Los Angeles, CA 90095 USA
关键词
D O I
10.1158/0008-5472.CAN-04-0452
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In current clinical practice, histology-based grading of diffuse infiltrative gliomas is the best predictor of patient survival time. Yet histology provides little insight into the underlying biology of gliomas and is limited in its ability to identify and guide new molecularly targeted therapies. We have performed large-scale gene expression analysis using the Affymetrix HG U133 oligonucleotide arrays on 85 diffuse infiltrating gliomas of all histologic types to assess whether a gene expression-based, histologyindependent classifier is predictive of survival and to determine whether gene expression signatures provide insight into the biology of gliomas. We found that gene expression-based grouping of tumors is a more powerful survival predictor than histologic grade or age. The poor prognosis samples could be grouped into three different poor prognosis groups, each with distinct molecular signatures. We further describe a list of 44 genes whose expression patterns reliably classify gliomas into previously unrecognized biological and prognostic groups: these genes are outstanding candidates for use in histology-independent classification of high-grade gliomas. The ability of the large scale and 44 gene set expression signatures to group tumors into strong survival groups was validated with an additional external and independent data set from another institution composed of 50 additional gliomas. This demonstrates that large-scale gene expression analysis and subset analysis of gliomas reveals unrecognized heterogeneity of tumors and is efficient at selecting prognosisrelated gene expression differences which are able to be applied across institutions.
引用
收藏
页码:6503 / 6510
页数:8
相关论文
共 50 条
  • [31] Toward a molecular classification of the gliomas: histopathology, molecular genetics, and gene expression profiling
    Caskey, LS
    Fuller, GN
    Bruner, JM
    Yung, WKA
    Sawaya, RE
    Holland, EC
    Zhang, W
    HISTOLOGY AND HISTOPATHOLOGY, 2000, 15 (03) : 971 - 981
  • [32] Gene expression profiling predicts a three-gene expression signature of endometrial adenocarcinoma in a rat model
    Karlsson, Sandra
    Olsson, Bjorn
    Klinga-Levan, Karin
    CANCER CELL INTERNATIONAL, 2009, 9
  • [33] Gene expression profiling predicts a three-gene expression signature of endometrial adenocarcinoma in a rat model
    Sandra Karlsson
    Björn Olsson
    Karin Klinga-Levan
    Cancer Cell International, 9
  • [34] TARGETED GENE EXPRESSION PROFILING PREDICTS MENINGIOMA OUTCOMES AND RADIOTHERAPY RESPONSES
    Chen, William
    Choudhury, Abrar
    Youngblood, Mark W.
    Polly, Mei-Yin
    Lucas, Calixto-Hope
    Mirchia, Kanish
    Maas, Sybren
    Suwala, Abigail
    Won, Minhee
    Bayley, James
    Harmanci, Akdes
    Harmanci, Arif
    Klisch, Tiemo
    Minh Nguyen
    Vasudevan, Harish
    McCortney, Katy
    Lam, Tai-Chung
    Pu, Jenny Kan-Suen
    Li, Lai-Fung
    Leung, Gilberto Ka-Kit
    Chan, Jason
    Perlow, Haley
    Palmer, Joshua
    Berghoff, Anna
    Preusser, Matthias
    Nicolaides, Theodore
    Mawrin, Christian
    Young, Jacob
    Boreta, Lauren
    Braunstein, Steve
    Schulte, Jessica
    Butowski, Nicholas
    Santagata, Sandro
    Bush, Nancy Ann Oberheim
    Villanueva-Meyer, Javier
    Chandler, James P.
    Solomon, David
    Rogers, Leland
    Pugh, Stephanie
    Mehta, Minesh
    Sneed, Penny
    Berger, Mitchel
    Horbinski, Craig
    McDermott, Michael
    Perry, Arie
    Bi, Wenya Linda
    Patel, Akash
    Sahm, Felix
    Magill, Stephen
    Raleigh, David
    NEURO-ONCOLOGY, 2023, 25
  • [35] Spatial gene expression profiling predicts multiple sclerosis lesion evolution
    Wijering, M. H. C.
    Alsema, A. M.
    Miedema, A.
    Rijnsburger, M.
    van Weering, H. R. J.
    de Vries, H. E.
    Baron, W.
    Kooistra, S. M.
    Eggen, B. J. L.
    GLIA, 2023, 71 : E416 - E416
  • [36] Serum metabolomic profiling predicts synovial gene expression in rheumatoid arthritis
    Rekha Narasimhan
    Roxana Coras
    Sara B. Rosenthal
    Shannon R. Sweeney
    Alessia Lodi
    Stefano Tiziani
    David Boyle
    Arthur Kavanaugh
    Monica Guma
    Arthritis Research & Therapy, 20
  • [37] TARGETED GENE EXPRESSION PROFILING PREDICTS MENINGIOMA OUTCOMES AND RADIOTHERAPY RESPONSES
    Chen, William
    Choudhury, Abrar
    Vasudevan, Harish
    Lucas, Calixto
    Nguyen, Minh
    Young, Jacob
    Yu, Theresa
    Lam, Tai-Chung
    Pu, Jenny
    Li, Lai-Fung
    Leung, Gilberto
    Chan, Jason
    Oberheim-Bush, Nancy Ann
    Villanueva-Meyer, Javier
    Schulte, Jessica
    Braunstein, Steve
    Butowski, Nicholas
    Sneed, Penny
    Berger, Mitchel
    Perry, Arie
    Solomon, David
    McDermott, Michael
    Magill, Stephen
    Raleigh, David
    NEURO-ONCOLOGY, 2021, 23 : 19 - 20
  • [38] Serum Metabolomic Profiling Predicts Synovial Gene Expression in Rheumatoid Arthritis
    Narasimhan, Rekha
    Coras, Roxana
    Rosenthal, Sara B.
    Sweeney, Shannon R.
    Lodi, Alessia
    Tiziani, Stefano
    Boyle, David L.
    Kavanaugh, Arthur
    Guma, Monica
    ARTHRITIS & RHEUMATOLOGY, 2018, 70
  • [39] Serum metabolomic profiling predicts synovial gene expression in rheumatoid arthritis
    Narasimhan, Rekha
    Coras, Roxana
    Rosenthal, Sara B.
    Sweeney, Shannon R.
    Lodi, Alessia
    Tiziani, Stefano
    Boyle, David
    Kavanaugh, Arthur
    Guma, Monica
    ARTHRITIS RESEARCH & THERAPY, 2018, 20
  • [40] Targeted gene expression profiling predicts meningioma outcomes and radiotherapy responses
    Chen, William C.
    Choudhury, Abrar
    Youngblood, Mark W.
    Polley, Mei-Yin C.
    Lucas, Calixto-Hope G.
    Mirchia, Kanish
    Maas, Sybren L. N.
    Suwala, Abigail K.
    Won, Minhee
    Bayley, James C.
    Harmanci, Akdes S.
    Harmanci, Arif O.
    Klisch, Tiemo J.
    Nguyen, Minh P.
    Vasudevan, Harish N.
    Mccortney, Kathleen
    Yu, Theresa J.
    Bhave, Varun
    Lam, Tai-Chung
    Pu, Jenny Kan-Suen
    Li, Lai-Fung
    Leung, Gilberto Ka-Kit
    Chan, Jason W.
    Perlow, Haley K.
    Palmer, Joshua D.
    Haberler, Christine
    Berghoff, Anna S.
    Preusser, Matthias
    Nicolaides, Theodore P.
    Mawrin, Christian
    Agnihotri, Sameer
    Resnick, Adam
    Rood, Brian R.
    Chew, Jessica
    Young, Jacob S.
    Boreta, Lauren
    Braunstein, Steve E.
    Schulte, Jessica
    Butowski, Nicholas
    Santagata, Sandro
    Spetzler, David
    Bush, Nancy Ann Oberheim
    Villanueva-Meyer, Javier E.
    Chandler, James P.
    Solomon, David A.
    Rogers, C. Leland
    Pugh, Stephanie L.
    Mehta, Minesh P.
    Sneed, Penny K.
    Berger, Mitchel S.
    NATURE MEDICINE, 2023, 29 (12) : 3067 - 3076