The matrix-weighted dyadic convex body maximal operator is not bounded

被引:2
|
作者
Nazarov, F.
Petermichl, S.
Skreb, K. A.
Treil, S.
机构
关键词
Matrix weight; Maximal function; Convex body;
D O I
10.1016/j.aim.2022.108711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The convex body maximal operator is a natural generalization of the Hardy-Littlewood maximal operator. In this paper we are considering its dyadic version in the presence of a matrix weight. To our surprise it turns out that this operator is not bounded. This is in a sharp contrast to a Doob's inequality in this context. At first, we show that the convex body Carleson Embedding Theorem with matrix weight fails. We then deduce the unboundedness of the matrix-weighted convex body maximal operator.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Discrete-Time Matrix-Weighted Consensus
    Quoc Van Tran
    Minh Hoang Trinh
    Ahn, Hyo-Sung
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (04): : 1568 - 1578
  • [22] Traces and extensions of matrix-weighted Besov spaces
    Frazier, Michael
    Roudenko, Svetlana
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 181 - 192
  • [23] Convex body domination and weighted estimates with matrix weights
    Nazarov, Fedor
    Petermichl, Stefanie
    Treil, Sergei
    Volberg, Alexander
    ADVANCES IN MATHEMATICS, 2017, 318 : 279 - 306
  • [24] Behaviors of matrix-weighted networks with antagonistic interactions
    Miao, Suoxia
    Su, Housheng
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 467
  • [25] Embedding and Duality of Matrix-weighted Modulation Spaces
    Wang, Shengrong
    Guo, Pengfei
    Xu, Jingshi
    TAIWANESE JOURNAL OF MATHEMATICS, 2025, 29 (01): : 171 - 187
  • [26] Consensus of Matrix-Weighted Hybrid Multiagent Systems
    Miao, Suoxia
    Su, Housheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 668 - 678
  • [27] Littlewood–Paley theory for matrix-weighted function spaces
    Michael Frazier
    Svetlana Roudenko
    Mathematische Annalen, 2021, 380 : 487 - 537
  • [28] Lp bounds for a maximal dyadic sum operator
    Grafakos, L
    Tao, T
    Terwilleger, E
    MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (1-2) : 321 - 337
  • [29] Lp bounds for a maximal dyadic sum operator
    Loukas Grafakos
    Terence Tao
    Erin Terwilleger
    Mathematische Zeitschrift, 2004, 246 : 321 - 337
  • [30] Disturbance observer-based matrix-weighted consensus
    Trinh, Minh Hoang
    Tran, Quoc Van
    Sun, Zhiyong
    Ahn, Hyo-Sung
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (15) : 10194 - 10214