The matrix-weighted dyadic convex body maximal operator is not bounded

被引:2
|
作者
Nazarov, F.
Petermichl, S.
Skreb, K. A.
Treil, S.
机构
关键词
Matrix weight; Maximal function; Convex body;
D O I
10.1016/j.aim.2022.108711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The convex body maximal operator is a natural generalization of the Hardy-Littlewood maximal operator. In this paper we are considering its dyadic version in the presence of a matrix weight. To our surprise it turns out that this operator is not bounded. This is in a sharp contrast to a Doob's inequality in this context. At first, we show that the convex body Carleson Embedding Theorem with matrix weight fails. We then deduce the unboundedness of the matrix-weighted convex body maximal operator.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Weighted Inequality for a Dyadic-Like Maximal Operator
    M. Rapicki
    Analysis Mathematica, 2018, 44 : 577 - 585
  • [2] A WEIGHTED INEQUALITY FOR A DYADIC-LIKE MAXIMAL OPERATOR
    Rapicki, M.
    ANALYSIS MATHEMATICA, 2018, 44 (04) : 577 - 585
  • [3] The strong matrix weighted maximal operator
    Vuorinen, Emil
    ADVANCES IN MATHEMATICS, 2024, 453
  • [4] WEIGHTED INEQUALITIES FOR THE DYADIC MAXIMAL OPERATOR INVOLVING AN INFINITE PRODUCT
    Chen, Wei
    Chen, Ruijuan
    Zhang, Chao
    COLLOQUIUM MATHEMATICUM, 2016, 145 (02) : 231 - 244
  • [5] ON THE SPECTRUM OF THE TRANSPORT OPERATOR FOR A BOUNDED CONVEX BODY
    阳名珠
    姚爱翔
    ActaMathematicaScientia, 1990, (04) : 402 - 411
  • [6] Expansion in matrix-weighted graphs
    Hansen, Jakob
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 : 252 - 273
  • [7] On the Controllability of Matrix-Weighted Networks
    Pan, Lulu
    Shao, Haibin
    Mesbahi, Mehran
    Xi, Yugeng
    Li, Dewei
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (03): : 572 - 577
  • [8] ON THE SPECTRUM OF THE TRANSPORT-OPERATOR FOR A BOUNDED CONVEX BODY
    YANG, MZ
    YAO, AX
    ACTA MATHEMATICA SCIENTIA, 1990, 10 (04) : 402 - 411
  • [9] Matrix-weighted Besov spaces
    Roudenko, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (01) : 273 - 314
  • [10] The geometry of the dyadic maximal operator
    Nikolidakis, Eleftherios
    REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (04) : 1397 - 1411