Creep characterization of solder bumps using nanoindentation

被引:4
|
作者
Du, Yingjie [1 ]
Liu, Xiao Hu [2 ]
Fu, Boshen [3 ]
Shaw, Thomas M. [2 ]
Lu, Minhua [2 ]
Wassick, Thomas A. [2 ]
Bonilla, Griselda [2 ]
Lu, Hongbing [1 ]
机构
[1] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[2] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
[3] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74074 USA
关键词
Nanoindentation; Creep exponent; Activation energy; Solder bump; Finite element analysis; POWER-LAW CREEP; LEAD-FREE SOLDERS; INDENTATION; SN; PB;
D O I
10.1007/s11043-016-9330-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.
引用
收藏
页码:287 / 305
页数:19
相关论文
共 50 条
  • [41] Accelerated testing of creep in polymeric materials using nanoindentation
    Maxwell, A. S.
    Monclus, M. A.
    Jennett, N. M.
    Dean, G.
    POLYMER TESTING, 2011, 30 (04) : 366 - 371
  • [42] Characterisation of electroplated Sn/Ag solder bumps
    Bigas, M
    Cabruja, E
    MICROELECTRONICS JOURNAL, 2006, 37 (04) : 308 - 316
  • [43] Void detection in solder bumps with deep learning
    van Veenhuizen, Marc
    MICROELECTRONICS RELIABILITY, 2018, 88-90 : 315 - 320
  • [44] Simulation and Measurement of the Solder Bumps with a plastic Core
    Schlobohm, J.
    Weide-Zaage, K.
    Rongen, R.
    Voogt, F.
    Roucou, R.
    2013 14TH INTERNATIONAL CONFERENCE ON THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS (EUROSIME), 2013,
  • [45] Defects inspection of the solder bumps using self reference technology in active thermography
    Lu, Xiangning
    Shi, Tielin
    Han, Jiguang
    Liao, Guanglan
    Su, Lei
    Wang, Suya
    INFRARED PHYSICS & TECHNOLOGY, 2014, 63 : 97 - 102
  • [46] A FUZZY SVM FOR INTELLIGENT DIAGNOSIS OF SOLDER BUMPS USING SCANNING ACOUSTIC MICROSCOPY
    Fan, Mengying
    Su, Lei
    Li, Liyi
    Wei, Wei
    He, Zhenzhi
    Wong, Chingping
    Lu, Xiangning
    2016 CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE (CSTIC), 2016,
  • [47] Microstructure of lead-free solder bumps using laser reflow soldering
    Nishikawa, Hiroshi
    Iwata, Noriya
    Kubota, Shinya
    INTERNATIONAL SYMPOSIUM ON INTERFACIAL JOINING AND SURFACE TECHNOLOGY (IJST2013), 2014, 61
  • [48] Research on defects inspection of solder bumps using active infrared thermography technology
    Lu X.
    He Z.
    Hu N.
    Su L.
    Nie L.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2016, 52 (10): : 17 - 24
  • [49] Thermal fatigue life of solder bumps in BGA
    Mukai, Minoru
    Kawakami, Takashi
    Takahashi, Kuniaki
    Kishimoto, Kikuo
    Shibuya, Tosikaz
    JSME International Journal, Series A: Mechanics and Material Engineering, 1998, 41 (02): : 260 - 266
  • [50] SIZED SOLDER BUMPS MAKE SOLID JOINTS
    LYMAN, J
    ELECTRONICS-US, 1981, 54 (22): : 46 - +