Local structured representation for generic object detection

被引:2
|
作者
Zhang, Junge [1 ,3 ]
Huang, Kaiqi [1 ,2 ,3 ]
Tan, Tieniu [1 ,2 ,3 ]
Zhang, Zhaoxiang [2 ,3 ]
机构
[1] Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Local Structured Descriptor; Local Structured Model; Object Representation; Object Structure; Object Detection; PASCAL VOC; SCALE; CLASSIFICATION; RECOGNITION; GRADIENTS; FEATURES;
D O I
10.1007/s11704-016-5530-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of structure modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we propose Local Structured Descriptor to capture the object's local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local structured model with a boosted feature selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance.
引用
收藏
页码:632 / 648
页数:17
相关论文
共 50 条
  • [31] Grouplet: A Structured Image Representation for Recognizing Human and Object Interactions
    Yao, Bangpeng
    Li Fei-Fei
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 9 - 16
  • [32] Structured ordinal features for appearance-based object representation
    Liao, Shengcai
    Lei, Zhen
    Li, Stan Z.
    Yuan, Xiaotong
    He, Ran
    ANALYSIS AND MODELING OF FACES AND GESTURES, PROCEEDINGS, 2007, 4778 : 183 - 192
  • [33] Weak hypotheses and boosting for generic object detection and recognition
    Opelt, A
    Fussenegger, M
    Pinz, A
    Auer, P
    COMPUTER VISION - ECCV 2004, PT 2, 2004, 3022 : 71 - 84
  • [34] Toward Generic and Controllable Attacks Against Object Detection
    Li, Guopeng
    Xu, Yue
    Ding, Jian
    Xia, Gui-Song
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [35] Confidence Rated Boosting Algorithm for Generic Object Detection
    Zaidi, Nayyar A.
    Suter, David
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3221 - 3224
  • [36] Generic Object Detection Using Improved Gentleboost Classifier
    Guo, Li
    Liao, Yu
    Luo, Daisheng
    Liao, Honghua
    INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 1528 - 1535
  • [37] Gaussian Combined Distance: A Generic Metric for Object Detection
    Guan, Ziqian
    Fu, Xieyi
    Huang, Pengjun
    Zhang, Hengyuan
    Du, Hubin
    Liu, Yongtao
    Wang, Yinglin
    Ma, Qang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [38] Generic Object Recognition with Local Features: from Bags to Subspaces
    Raytchev, Bisser
    Kikutsugi, Yuta
    Shigenaka, Ryosuke
    Tamaki, Toru
    Kaneda, Kazufumi
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [39] A Training-Free Approach for Generic Object Detection
    Baheti, Bhakti, V
    Talbar, Sanjay N.
    Gajre, Suhas S.
    IETE JOURNAL OF RESEARCH, 2022, 68 (01) : 482 - 495
  • [40] Generic Object Class Detection Using Feature Maps
    Danielsson, Oscar
    Carlsson, Stefan
    IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 348 - 359