Joint estimation of target number and DOA using reversible jump MCMC in sea clutter

被引:0
|
作者
Lu, XL [1 ]
Kirlin, L [1 ]
Wang, J [1 ]
机构
[1] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC V8W 3P6, Canada
来源
SAM2002: IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS | 2002年
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we address the problem of detection of a small target in high frequency ocean surveillance radar using the method of Reversible Jump Monte Carlo Markov Chain. The number and the directions of arrival of targets are estimated simultaneously. However, the existence of sea clutter makes the traditional RJMCMC inefficient, and an adaptive preprocessing is preferred in combination with the original RJMCMC to achieve better detection. The performance of the proposed method is analyzed through several experiments with real data.
引用
收藏
页码:346 / 349
页数:4
相关论文
共 50 条
  • [21] Malware Family Discovery Using Reversible Jump MCMC Sampling of Regimes
    Bolton, Alexander D.
    Heard, Nicholas A.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1490 - 1502
  • [22] Bayesian Volterra system identification using reversible jump MCMC algorithm
    Karakus, O.
    Kuruoglu, E. E.
    Altinkaya, M. A.
    SIGNAL PROCESSING, 2017, 141 : 125 - 136
  • [23] Joint DOA and Clutter Covariance Matrix Estimation in Compressive Sensing MIMO Radar
    Salari, Soheil
    Chan, Francois
    Chan, Yiu-Tong
    Kim, Il-Min
    Cormier, Roger
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (01) : 318 - 331
  • [24] Joint DOD and DOA Estimation for High Speed Target Using Bistatic MIMO Radar
    Chen, Jinli
    Li, Jiaqiang
    Li, Peng
    Zhu, Yanping
    Long, Weijun
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2014, 2014
  • [25] Genome segmentation using piecewise constant intensity models and reversible jump MCMC
    Salmenkivi, M
    Kere, J
    Mannila, H
    BIOINFORMATICS, 2002, 18 : S211 - S218
  • [26] BAYESIAN ASSESSMENT OF THE DISTRIBUTION OF INSURANCE CLAIM COUNTS USING REVERSIBLE JUMP MCMC
    Ntzoufras, Ioannis
    Katsis, Athanassios
    Karlis, Dimitris
    NORTH AMERICAN ACTUARIAL JOURNAL, 2005, 9 (03) : 90 - 108
  • [27] Wide band channel characterisation in coloured noise using the Reversible Jump MCMC
    Larocque, JR
    Reilly, JP
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 2513 - 2516
  • [28] Synthesizing Open Worlds with Constraints using Locally Annealed Reversible Jump MCMC
    Yeh, Yi-Ting
    Yang, Lingfeng
    Watson, Matthew
    Goodman, Noah D.
    Hanrahan, Pat
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (04):
  • [29] Using the Reversible Jump MCMC Procedure for Identifying and Estimating Univariate TAR Models
    Nieto, Fabio H.
    Zhang, Hanwen
    Li, Wen
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (04) : 814 - 840
  • [30] R package rjmcmc: reversible jump MCMC using post-processing
    Gelling, Nicholas
    Schofield, Matthew R.
    Barker, Richard J.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2019, 61 (02) : 189 - 212