On unitary splitting perfect polynomials over Fp2

被引:0
|
作者
Gallardo, Luis H. [1 ]
Rahavandrainy, Olivier [1 ]
机构
[1] Univ Brest 6, Dept Math, F-29238 Brest 3, France
关键词
unitary divisors; sum of divisors; polynomials; finite fields; quadratic extensions; circulant matrices;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify some unitary splitting perfect polynomials over affinite field F-p2, where p is a prime number. This generalizes Beard's workover F-p.
引用
收藏
页码:159 / 176
页数:18
相关论文
共 50 条
  • [31] SPECIFICATION OF A PIPELINED EVENT DRIVEN SIMULATOR USING FP2
    SCHAEFER, P
    SCHNOEBELEN, P
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1987, 258 : 311 - 328
  • [32] PINNED ALGEBRAIC DISTANCES DETERMINED BY CARTESIAN PRODUCTS IN Fp2
    Petridis, Giorgis
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) : 4639 - 4645
  • [33] Gottfried sum rule and the ratio Fn2/Fp2
    Arash, F.
    [J]. Physical Review D Particles, Fields, Gravitation and Cosmology, 52 (01):
  • [34] Measuring Fn2/Fp2 and d/u:: Past and future
    Petratos, GG
    [J]. STRUCTURE OF THE NUCLEON AT LARGE BJORKEN X, 2005, 747 : 32 - 39
  • [35] On k-perfect polynomials over F2
    Chehade, Haissam
    Alkhezi, Yousuf
    Zeid, Wiam
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (50): : 201 - 214
  • [36] CHARACTERIZATION OF SPORADIC PERFECT POLYNOMIALS OVER F-2
    Gallardo, Luis H.
    Rahavandrainy, Olivier
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2016, 55 (01) : 7 - 21
  • [37] Measurement of the proton and the deuteron structure functions, Fp2 and Fd2
    [J]. Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 364 (02):
  • [38] Additive polynomials over perfect fields
    Durhan, Salih
    [J]. VALUATION THEORY IN INTERACTION, 2014, : 219 - 225
  • [39] 关于有限域Fp2上的原根
    霍家佳
    张起帆
    [J]. 四川大学学报(自然科学版), 2003, (03) : 447 - 452
  • [40] A polynomial method approach to zero-sum subsets in Fp2
    Pohoata, Cosmin
    [J]. ACTA ARITHMETICA, 2018, 182 (03) : 243 - 247