WEIGHTED Lp ESTIMATES OF KATO SQUARE ROOTS ASSOCIATED TO DEGENERATE ELLIPTIC

被引:6
|
作者
Yang, Dachun [1 ]
Zhang, Junqiang [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Kato square root; degenerate elliptic operator; Riesz transform; Lebesgue space; Hardy space; square function; Muckenhoupt weight; ORLICZ-HARDY SPACES; INHOMOGENEOUS DIRICHLET; NORM INEQUALITIES; OPERATORS; INTERPOLATION; DUALITY; REGULARITY; SOBOLEV; BOUNDS;
D O I
10.5565/PUBLMAT6121704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w be a Muckenhoupt A(2) (R-n) weight and L-w := -w(-1) div (A del) the degenerate elliptic operator on the Euclidean space R-n, n >= 2. In this article, the authors establish some weighted L-p estimates of Kato square roots associated to the degenerate elliptic operators L-w. More precisely, the authors prove that, for w is an element of A(p) (R-n), p is an element of (2n/n+1, 2] and any f is an element of C-c(infinity) (R-n), parallel to L-w(1/2) (f)parallel to(Lp (w,Rn)) similar to parallel to del f parallel to(Lp (w,Rn)), where C-c(infinity) (R-n) denotes the set of all infinitely differential functions with compact supports and the implicit equivalent positive constants are independent of f.
引用
收藏
页码:395 / 444
页数:50
相关论文
共 50 条