Bayes' theorem and quantum retrodiction

被引:30
|
作者
Barnett, SM [1 ]
Pegg, DT
Jeffers, J
机构
[1] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 0NG, Lanark, Scotland
[2] Griffith Univ, Fac Sci, Brisbane, Qld 4111, Australia
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1080/09500340008232431
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive on the basis of Bayes' theorem a simple but general expression for the retrodicted premeasurement state associated with the result of any measurement. The retrodictive density operator is the normalized probability operator measure element associated with the result. We examine applications to quantum optical cryptography and to the optical beam splitter.
引用
收藏
页码:1779 / 1789
页数:11
相关论文
共 50 条
  • [11] Retrodiction for quantum optical communications
    Barnett, Stephen M.
    Pegg, David T.
    Jeffers, John
    Jedrkiewicz, Ottavia
    Loudon, Rodney
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (02): : 022313 - 022311
  • [12] Quantum Cryptography as a Retrodiction Problem
    Werner, A. H.
    Franz, T.
    Werner, R. F.
    PHYSICAL REVIEW LETTERS, 2009, 103 (22)
  • [13] Quantum retrodiction in open systems
    Pegg, DT
    Barnett, SM
    Jeffers, J
    PHYSICAL REVIEW A, 2002, 66 (02):
  • [14] RETRODICTION IN QUANTUM-THEORY
    BELINFAN.FJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (01): : 144 - 144
  • [15] Quantum Retrodiction: Foundations and Controversies
    Barnett, Stephen M.
    Jeffers, John
    Pegg, David T.
    SYMMETRY-BASEL, 2021, 13 (04):
  • [16] BAYES THEOREM
    NICHOLLS, EM
    STARK, AE
    MEDICAL JOURNAL OF AUSTRALIA, 1971, 2 (26) : 1335 - &
  • [17] Bayes' Theorem
    Berkson, J
    ANNALS OF MATHEMATICAL STATISTICS, 1930, 1 (01): : 42 - 56
  • [18] Bayes' theorem
    Jorge López Puga
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2015, 12 : 277 - 278
  • [19] From retrodiction to Bayesian quantum imaging
    Speirits, Fiona C.
    Sonnleitner, Matthias
    Barnett, Stephen M.
    JOURNAL OF OPTICS, 2017, 19 (04)
  • [20] BAYES THEOREM
    CORNFIELD, J
    REVUE DE L INSTITUT INTERNATIONAL DE STATISTIQUE-REVIEW OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1967, 35 (01): : 34 - +