Bayes' theorem and quantum retrodiction

被引:30
|
作者
Barnett, SM [1 ]
Pegg, DT
Jeffers, J
机构
[1] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 0NG, Lanark, Scotland
[2] Griffith Univ, Fac Sci, Brisbane, Qld 4111, Australia
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1080/09500340008232431
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive on the basis of Bayes' theorem a simple but general expression for the retrodicted premeasurement state associated with the result of any measurement. The retrodictive density operator is the normalized probability operator measure element associated with the result. We examine applications to quantum optical cryptography and to the optical beam splitter.
引用
收藏
页码:1779 / 1789
页数:11
相关论文
共 50 条
  • [1] Bayes' theorem and quantum retrodiction
    Barnett, Stephen M.
    Pegg, David T.
    Jeffers, John
    1779, Taylor and Francis Ltd. (47)
  • [2] Quantum retrodiction
    Jeffers, J
    Barnett, SM
    Pegg, D
    Jedrkiewicz, O
    Loudon, R
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3, 2001, : 143 - 146
  • [3] State retrieval beyond Bayes' retrodiction
    Surace, Jacopo
    Scandi, Matteo
    QUANTUM, 2023, 7
  • [4] Quantum retrodiction
    Jeffers, John
    Oi, Daniel K. L.
    Brougham, Thomas
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2287):
  • [5] Retrodiction in quantum optics
    Pegg, DT
    Barnett, SM
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 1999, 1 (04) : 442 - 445
  • [6] Is Bayes Theorem Applicable to all Quantum States?
    Razmi, H.
    Allahyari, J.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A3): : 609 - 611
  • [7] Is Bayes Theorem Applicable to all Quantum States?
    H. Razmi
    J. Allahyari
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 609 - 611
  • [8] Quantum retrodiction in open systems
    Pegg, David T.
    Barnett, Stephen M.
    Jeffers, John
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (02): : 1 - 022106
  • [9] Retrodiction for quantum optical communications
    Barnett, SM
    Pegg, DT
    Jeffers, J
    Jedrkiewicz, O
    Loudon, R
    PHYSICAL REVIEW A, 2000, 62 (02): : 4
  • [10] Sharpening the second law of thermodynamics with the quantum Bayes theorem
    Gharibyan, Hrant
    Tegmark, Max
    PHYSICAL REVIEW E, 2014, 90 (03):