Activity recognition on smartphones using an AKNN based support vectors

被引:1
|
作者
Abidine, M'hamed Bilal [1 ]
Oussalah, Mourad [2 ]
Fergani, Belkacem [1 ]
Lounis, Hakim [3 ]
机构
[1] Univ Sci & Technol Houari Boumed, Dept Elect & Elect Engn, Algiers, Algeria
[2] Oulun Yliopisto, Fac Informat Technol & Elect Engn, Oulu, Finland
[3] Univ Quebec, Dept, Montreal, PQ, Canada
基金
芬兰科学院;
关键词
Smartphone data; Activity recognition; Machine learning; WSVM; KNN; CLASSIFICATION; SENSORS;
D O I
10.1108/SR-05-2021-0157
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Purpose Mobile phone-based human activity recognition (HAR) consists of inferring user's activity type from the analysis of the inertial mobile sensor data. This paper aims to mainly introduce a new classification approach called adaptive k-nearest neighbors (AKNN) for intelligent HAR using smartphone inertial sensors with a potential real-time implementation on smartphone platform. Design/methodology/approach The proposed method puts forward several modification on AKNN baseline by using kernel discriminant analysis for feature reduction and hybridizing weighted support vector machines and KNN to tackle imbalanced class data set. Findings Extensive experiments on a five large scale daily activity recognition data set have been performed to demonstrate the effectiveness of the method in terms of error rate, recall, precision, F1-score and computational/memory resources, with several comparison with state-of-the art methods and other hybridization modes. The results showed that the proposed method can achieve more than 50% improvement in error rate metric and up to 5.6% in F1-score. The training phase is also shown to be reduced by a factor of six compared to baseline, which provides solid assets for smartphone implementation. Practical implications This work builds a bridge to already growing work in machine learning related to learning with small data set. Besides, the availability of systems that are able to perform on flight activity recognition on smartphone will have a significant impact in the field of pervasive health care, supporting a variety of practical applications such as elderly care, ambient assisted living and remote monitoring. Originality/value The purpose of this study is to build and test an accurate offline model by using only a compact training data that can reduce the computational and memory complexity of the system. This provides grounds for developing new innovative hybridization modes in the context of daily activity recognition and smartphone-based implementation. This study demonstrates that the new AKNN is able to classify the data without any training step because it does not use any model for fitting and only uses memory resources to store the corresponding support vectors.
引用
收藏
页码:384 / 401
页数:18
相关论文
共 50 条
  • [21] Physical activity recognition by smartphones, a survey
    Morales, Jafet
    Akopian, David
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2017, 37 (03) : 388 - 400
  • [22] Real Time Human Activity Recognition on Smartphones using LSTM Networks
    Milenkoski, Martin
    Trivodaliev, Kire
    Kalajdziski, Slobodan
    Jovanov, Mile
    Stojkoska, Biljana Risteska
    2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 1126 - 1131
  • [23] User-trained activity recognition using smartphones and weak supervision
    Duffy, William
    Curran, Kevin
    Kelly, Daniel
    Lunney, Tom
    2019 30TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2019,
  • [24] A Study on Human Activity Recognition Using Accelerometer Data from Smartphones
    Bayat, Akram
    Pomplun, Marc
    Tran, Duc A.
    9TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC'14) / THE 11TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC'14) / AFFILIATED WORKSHOPS, 2014, 34 : 450 - 457
  • [25] An Investigation into Non-Invasive Physical Activity Recognition using Smartphones
    Kelly, Daniel
    Caulfield, Brian
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 3340 - 3343
  • [26] Estimation of brain activity using support vectors machines
    Seijas, Cesar
    Caralli, Antonino
    Villazana, Sergio
    2007 3RD INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, VOLS 1 AND 2, 2007, : 604 - +
  • [27] Protein-Protein Recognition Prediction Using Support Vector Machine Based on Feature Vectors
    Kuo, Huang-Cheng
    Ong, Ping-Lin
    Lin, Jung-Chang
    Huang, Jen-Peng
    2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, PROCEEDINGS, 2008, : 200 - +
  • [28] An Energy-Efficient Human Activity Recognition System Based on Smartphones
    Shi, Junhao
    Zuo, Decheng
    Zhang, Zhan
    2020 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2020), 2020, : 177 - 181
  • [29] A New Semantic-based Multi-Level Classification Approach for Activity Recognition Using Smartphones
    Ben Brahim, Ghassen
    El-Hajj, Wassim
    El-Hayek, Cynthia
    Hajj, Hazem
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2020, 30 (08) : 1051 - 1078
  • [30] Voice Activity Detection based on Support Vector Machine using Effective Feature Vectors
    Jo, Q-Haing
    Park, Yun-Sik
    Lee, Kye-Hwan
    Song, Ji-Hyun
    Chang, Joon-Hyuk
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 981 - 984