Order-coherent archimedean f-algebras

被引:0
|
作者
Jerman, M [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
关键词
po-coherent ring; uniformly complete f-algebra; Dedekind sigma-complete f-algebra; coherent ring; projectable ring; the first convexity property; U-algebra;
D O I
10.1007/s000120200014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an Archimedean uniformly complete f-algebra with unit element. It is shown that A is a po-coherent ring (in the sense of F. Wehrung) if and only if A is Dedekind sigma-complete.
引用
收藏
页码:485 / 496
页数:12
相关论文
共 50 条
  • [41] ON VONNEUMANN REGULAR F-ALGEBRAS
    HUIJSMANS, CB
    DEPAGTER, B
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1986, 2 (04): : 403 - 408
  • [42] Composition operators on f-algebras
    R. Abid
    M. A. Ben Amor
    K. Boulabiar
    Positivity, 2017, 21 : 521 - 537
  • [43] CONTINUITY OF DERIVATIONS IN F-ALGEBRAS
    CARPENTER, RL
    AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (02) : 500 - +
  • [44] THE TENSOR PRODUCT OF f-ALGEBRAS
    Azouzi, Youssef
    Ben Amor, Mohamed Amine
    Jaber, Jamel
    QUAESTIONES MATHEMATICAE, 2018, 41 (03) : 359 - 369
  • [45] Composition operators on f-algebras
    Abid, R.
    Ben Amor, M. A.
    Boulabiar, K.
    POSITIVITY, 2017, 21 (02) : 521 - 537
  • [46] Commutativity of almost F-algebras
    Toumi, Mohamed Ali
    POSITIVITY, 2007, 11 (02) : 357 - 368
  • [47] Tensor Products of f-algebras
    Buskes, G. J. H. M.
    Wickstead, A. W.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [48] SIMPLE PROOFS OF THE CAUCHY-SCHWARTZ INEQUALITY AND THE NEGATIVE DISCRIMINANT PROPERTY IN ARCHIMEDEAN ALMOST f-ALGEBRAS
    Adel Toumi
    Mohamed Ali Toumi
    Nedra Toumi
    Analysis in Theory and Applications, 2009, 25 (02) : 117 - 124
  • [49] Polar functions -: II:: completion classes of archimedean f-algebras vs. covers of compact spaces
    Martinez, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 190 (1-3) : 225 - 249
  • [50] Preserving operators on semiprime f-algebras
    Jamel, Jaber
    Adnen, Khalfaoui
    POSITIVITY, 2022, 26 (02)