K-PLANE CLUSTERING ALGORITHM FOR ANALYSIS DICTIONARY LEARNING

被引:18
|
作者
Zhang, Ye [1 ,2 ]
Wang, Haolong [1 ]
Wang, Wenwu [2 ]
Sanei, Saeid [3 ]
机构
[1] Nanchang Univ, Dept Elect & Informat Engn, Nanchang, Peoples R China
[2] Univ Surrey, Dept Elect Engn, Guildford, Surrey, England
[3] Univ Surrey, Dept Comp, Guildford, Surrey, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
K-plane clustering; Analysis dictionary learning; Co-sparse; Image denoising; SPARSE; SVD;
D O I
10.1109/MLSP.2013.6661910
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Analysis dictionary learning (ADL) aims to adapt dictionaries from training data based on an analysis sparse representation model. In a recent work, we have shown that, to obtain the analysis dictionary, one could optimise an objective function defined directly on the noisy signal, instead of on the estimated version of the clean signal as adopted in analysis K-SVD. Following this strategy, a new ADL algorithm using K-plane clustering is proposed in this paper, which is based on the observation that, the observed data are co-planer in the analysis sparse model. In other words, the columns of the observed data form multi-dimensional subspaces (hyper-planes), and the rows of the analysis dictionary are the normal vectors of the hyper-planes. The normal directions of the K-dimensional concentration hyper-planes can be estimated using the K-plane clustering algorithm, and then the rows of the analysis dictionary which are the normal vectors of the hyper-planes can be obtained. Experiments on natural image denoising demonstrate that the K-plane clustering algorithm provides comparable performance to the baseline algorithms, i.e. the analysis K-SVD and the subset pursuit based ADL.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Wavelet inversion of the k-plane transform and its application
    Qu, Gangrong
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (02) : 262 - 267
  • [32] Norm estimates for k-plane transforms and geometric inequalities
    Rubin, B.
    [J]. ADVANCES IN MATHEMATICS, 2019, 349 : 29 - 55
  • [33] LP ESTIMATES FOR CERTAIN GENERALIZATIONS OF K-PLANE TRANSFORMS
    DRURY, SW
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1989, 33 (03) : 367 - 374
  • [34] A SHARP k-PLANE STRICHARTZ INEQUALITY FOR THE SCHRODINGER EQUATION
    Bennett, Jonathan
    Bez, Neal
    Flock, Taryn C.
    Gutierrez, Susana
    Iliopoulou, Marina
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (08) : 5617 - 5633
  • [35] Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model
    Rubinstein, Ron
    Peleg, Tomer
    Elad, Michael
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (03) : 661 - 677
  • [36] A Nonparametric Bayesian Dictionary Learning Algorithm with Clustering Structure Similarity
    Dong Daoguang
    Rui Guosheng
    Tian Wenbiao
    Zhang Yang
    Liu Ge
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (11) : 2765 - 2772
  • [37] A Convergence Analysis of Distributed Dictionary Learning Based on the K-SVD Algorithm
    Raja, Haroon
    Bajwa, Waheed U.
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2186 - 2190
  • [38] Fast and robust spatial fuzzy bounded k-plane clustering method for human brain MRI image segmentation
    Kumar, Puneet
    Agrawal, R. K.
    Kumar, Dhirendra
    [J]. APPLIED SOFT COMPUTING, 2023, 133
  • [39] On some inversion formulas for Riesz potentials and k-plane transforms
    Boris Rubin
    [J]. Fractional Calculus and Applied Analysis, 2012, 15 : 34 - 43
  • [40] Maximizing Ink in Partial Edge Drawings of k-plane Graphs
    Hummel, Matthias
    Klute, Fabian
    Nickel, Soeren
    Noellenburg, Martin
    [J]. GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 : 323 - 336