Prediction of electronic structures and transport properties of SnS2/BN heterostructures by the density functional theory

被引:0
|
作者
Wu, Y. N. [1 ]
Liu, W. Q. [1 ]
Zhao, S. T. [1 ]
Huang, Y. S. [1 ]
Ni, J. [2 ,3 ]
机构
[1] Fuyang Normal Univ, Key Lab Funct Mat & Devices Informat Anhui Educ I, Fuyang 236037, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
来源
AIP ADVANCES | 2019年 / 9卷 / 08期
基金
中国国家自然科学基金;
关键词
Structural properties - Van der Waals forces - Electric fields - Transport properties - Semiconducting tin compounds - Electronic structure - IV-VI semiconductors - Sulfur compounds;
D O I
10.1063/1.5115241
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on the density functional theory and nonequilibrium Green's function, we have calculated the electronic structures and transport properties of two dimensional (2D) SnS2/BN van der Waals (vdW) heterostructures. The electron-hole pairs are spatially separated in SnS2/BN heterostructure, and located at BN and SnS2 layers, respectively. The electronic structure of SnS2/BN heterostructure are adjusted effectively by the external electric field. Compared with the SnS2/BN heterostructure, the SnS2/C-x(BN)(1-x) system has good properties of electronic transport. Additionally, for the mixed-dimensional heterosystem of BN/SnS2, the BNNT (5,5)/SnS2 and BNNT(5,0)/SnS2 present the characteristics of indirect and direct band structures, respectively. Thus, our calculations show that the SnS2/BN heterostructures possess the tunable electronic structures and transport properties. (C) 2019 Author(s).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] COMPARISON OF OPTICAL-PROPERTIES AND BAND STRUCTURES OF SNSE2 AND SNS2
    RAISIN, C
    BERTRAND, Y
    ROBIN, J
    SOLID STATE COMMUNICATIONS, 1977, 24 (04) : 353 - 356
  • [42] Electronic structures and optical properties of TiO2:Improved density-functional-theory investigation
    龚赛
    刘邦贵
    Chinese Physics B, 2012, 21 (05) : 512 - 518
  • [43] Density Functional Theory Study of the Electronic Structures of Galena
    Kang, Jianxiong
    An, Yanni
    Xue, Jiwei
    Ma, Xiao
    Li, Jiuzhou
    Chen, Fanfan
    Wang, Sen
    Wan, He
    Zhang, Chonghui
    Bu, Xianzhong
    PROCESSES, 2023, 11 (02)
  • [44] Anisotropic Low Schottky Barrier and Transport Properties of the Co-Intercalated Bilayer SnS2/Monolayer SnS2 Junction from First Principles
    Liu, Miao
    Tao, Bairui
    Zhang, Bo
    Wang, Huan
    Liu, Xiaojie
    Wang, Yin
    Yin, Haitao
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (04) : 2115 - 2121
  • [45] Electronic Transport Properties of One Dimensional Lithium Nanowire using Density Functional Theory
    Thakur, Anil
    Kumar, Arun
    Chandel, Surjeet
    Ahluwalia, P. K.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON CONDENSED MATTER PHYSICS 2014 (ICCMP 2014), 2015, 1661
  • [46] Density functional theory analysis of electronic and transport properties of functionalized Poly-Pyrrole
    Sriram, S.
    Thayumanavan, A.
    Balamurugan, D.
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2016, 7 (03): : 405 - 416
  • [47] Understanding of C/Ti-Doped SnS2 Photocatalytic Behaviors from Electronic Structures
    Jiang, Lei
    Jiang, Zhen-Yi
    Lin, Yan-Ming
    Zheng, Ji-Ming
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (11):
  • [48] Vacancy- and doping-dependent electronic and magnetic properties of monolayer SnS2
    Ullah, Hamid
    Noor-A-Alam, Mohammad
    Shin, Young-Han
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (01) : 391 - 402
  • [49] Structural and electronic properties of SnS2 stacked nanosheets: An ab-initio study
    Mabiala-Poaty, H. B.
    Douma, D. H.
    M'Passi-Mabiala, B.
    Mapasha, R. E.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2018, 120 : 211 - 217
  • [50] Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements
    Xiao, Wen-Zhi
    Xiao, Gang
    Rong, Qing-Yan
    Wang, Ling-Ling
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 99 : 182 - 188