Laminate Al2O3/Ta2O5 Metal/Insulator/Insulator/Metal (MIIM) Devices for High-Voltage Applications

被引:6
|
作者
Jenkins, Melanie A. [1 ]
Austin, Dustin Z. [1 ,2 ]
Holden, Konner E. K. [1 ]
Allman, Derryl [3 ]
Conley, John F., Jr. [1 ]
机构
[1] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97330 USA
[2] Lam Res, Tualatin, OR 97062 USA
[3] ON Semicond, Res & Dev, Gresham, OR 97030 USA
基金
美国国家科学基金会;
关键词
Insulators; Electrodes; Semiconductor diodes; Aluminum oxide; Performance evaluation; Substrates; Semiconductor device measurement; AlO; atomic layer deposition (ALD); conduction mechanisms; laminate; metal; insulator; metal (MIM); metal (MIIM); MIM diode; TaO; INSULATOR; DIODES;
D O I
10.1109/TED.2019.2948140
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We evaluate for high-voltage (HV) applications a series of metal/insulator/insulator/metal (MIIM) devices with relatively thick asymmetric Al2O3/Ta2O5 bilayer insulator barriers in which the Al2O3:Ta2O5 layer thickness ratio is varied from 1:1 to 1:9, with the thickness of the Al2O3 layer fixed at 30 nm. The impact of Ta2O5 to Al2O3 stack order and layer thickness ratio on current versus voltage asymmetry, reverse leakage, breakdown, and programable resistance ratio is investigated. Regions of operation are distinguished, and the responsible underlying dominant conduction mechanisms, including Schottky emission over the various barriers, ohmic conduction and Fowler-Nordheim tunneling through Al2O3, and defect-based Frenkel-Poole emission through Ta2O5 are identified. It was found that under positive bias, the low-resistance state in one-time programable usage is controlled by the thickness and properties of the Ta2O5 layer while the high-resistance state is determined by the thickness and properties of the Al2O3 layer. These results demonstrate that atomic layer deposition (ALD) bilayers are an effective way to engineer the electrical properties of HV metal-insulator-metal (MIM) devices.
引用
收藏
页码:5260 / 5265
页数:6
相关论文
共 50 条
  • [31] Thickness Dependence Characteristics of High-κ Al2O3 Based Metal-Insulator-Metal Antifuse
    Tian, Min
    Zhong, Huicai
    2019 CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE (CSTIC), 2019,
  • [32] Effects of Electrode on the Performance of Al2O3 Based Metal-Insulator-Metal Antifuse
    Tian, Min
    Zhong, Huicai
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2019, 8 (02) : N32 - N35
  • [33] The physical and electrical characteristics of Ta2O5 and physical vapor deposited ru in metal-insulator-metal capacitors
    Lee, JW
    Song, HS
    Kim, KM
    Lee, JM
    Roh, JS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (06) : F56 - F62
  • [34] Dielectric thinning model applied to metal insulator metal capacitors with Al2O3 dielectric
    Allers, K. H.
    Boeck, J.
    Boguth, S.
    Goller, K.
    Knapp, H.
    Lachner, R.
    MICROELECTRONICS RELIABILITY, 2009, 49 (12) : 1520 - 1528
  • [35] A metal-insulator-metal electron emitter based on a porous Al2O3 film
    Xue, Tao
    Liang, Zhi-Hu
    Zhang, Xiao-Ning
    Liu, Chun-Liang
    APPLIED PHYSICS LETTERS, 2015, 106 (16)
  • [36] Properties of stacked SrTiO3/Al2O3 metal-insulator-metal capacitors
    Lukosius, Mindaugas
    Wenger, Christian
    Blomberg, Tom
    Ruhl, Guenther
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2013, 31 (01):
  • [37] Nanostructured Bilayer Anodic TiO2/Al2O3 Metal-Insulator-Metal Capacitor
    Karthik, R.
    Kannadassan, D.
    Baghini, Maryam Shojaei
    Mallick, P. S.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (10) : 6894 - 6899
  • [38] Dielectric Stacking Effect of Al2O3 and HfO2 in Metal-Insulator-Metal Capacitor
    Park, In-Sung
    Ryu, Kyoung-min
    Jeong, Jaehack
    Ahn, Jinho
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (01) : 120 - 122
  • [39] Current-voltage characteristics and photoresponse of metal Al2O3 metal devices
    Singh, K.
    Hammond, S.N.A.
    Turkish Journal of Physics, 1998, 22 (04): : 315 - 323
  • [40] Heteroepitaxial growth of the δ-Ta2O5 films on α-Al2O3 (0001)
    Yong Le
    Xiaochen Ma
    Di Wang
    Hongdi Xiao
    Caina Luan
    Biao Zhang
    Jin Ma
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 1503 - 1510