SOIL SPECTRAL LIBRARY AND ITS USE IN SOIL CLASSIFICATION

被引:78
|
作者
Bellinaso, Henrique [1 ]
Melo Dematte, Jose Alexandre [1 ]
Romeiro, Suzana Araujo [2 ]
机构
[1] Univ Sao Paulo, Dept Soil Sci Dept, Escola Super Agr Luiz de Queiroz, BR-13418900 Piracicaba, SP, Brazil
[2] Univ Sao Paulo, PPG Soils & Plant Nutr, Escola Super Agr Luiz de Queiroz, BR-13418900 Piracicaba, SP, Brazil
来源
REVISTA BRASILEIRA DE CIENCIA DO SOLO | 2010年 / 34卷 / 03期
关键词
remote sensing; principal component analysis; soil classification; REFLECTANCE SPECTROSCOPY;
D O I
10.1590/S0100-06832010000300027
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matao, Paraguacu Paulista, Andradina, Ipaussu, Mirandopolis, Piracicaba, Sao Carlos, Araraquara, Guararapes, Valparaiso (SP); Navirai, Maracaju, Rio Brilhante, Tres Lagoas (MS); Goianesia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarenicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litolicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
引用
收藏
页码:861 / 870
页数:10
相关论文
共 50 条
  • [41] INTERPRETIVE SOIL CLASSIFICATION - AGRICULTURAL USE AND MANAGEMENT
    BARNES, CP
    HARPER, WG
    SOIL SCIENCE, 1949, 67 (02) : 141 - 149
  • [43] The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges
    Dematte, Jose A. M.
    Dotto, Andre Carnieletto
    Paivaa, Ariane F. S.
    Sato, Marcus, V
    Dalmolin, Ricardo S. D.
    de Araujo, Maria do Socorro B.
    da Silva, Elisangela B.
    Nanni, Marcos R.
    ten Caten, Alexandre
    Noronha, Norberto C.
    Lacerda, Marilusa P. C.
    de Araujo Filho, Jose Coelho
    Rizzo, Rodnei
    Bellinaso, Henrique
    Francelino, Marcio R.
    Schaefer, Carlos E. G. R.
    Vicente, Luiz E.
    dos Santos, Uemeson J.
    Barretto Sampaio, Everardo V. de Sa
    Menezes, Romulo S. C.
    de Souza, Jose Joao L. L.
    Abrahao, Walter A. P.
    Coelho, Ricardo M.
    Grego, Celia R.
    Lani, Joao L.
    Fernandes, Antonio R.
    Goncalves, Deyvison A. M.
    Silva, Sergio H. G.
    de Menezes, Michele D.
    Curi, Nilton
    Couto, Eduardo G.
    dos Anjos, Lucia H. C.
    Ceddia, Marcos B.
    Pinheiro, Erika F. M.
    Grunwald, Sabine
    Vasques, Gustavo M.
    Marques Junior, Jose
    da Silvax, Airon J.
    de Vasconcelos Barreto, Marcos C.
    Nobrega, Gabriel N.
    da Silva, Marcelo Z.
    de Souza, Sara F.
    Valladares, Gustavo S.
    Viana, Joao Herbert M.
    Terra, Fabricio da Silva
    Horak-Terra, Ingrid
    Fiorio, Peterson R.
    da Silva, Rafael C.
    Frade Junior, Elizio F.
    Lima, Raimundo H. C.
    GEODERMA, 2019, 354
  • [44] Data mining of urban soil spectral library for estimating organic carbon
    Hong, Yongsheng
    Chen, Yiyun
    Chen, Songchao
    Shen, Ruili
    Hu, Bifeng
    Peng, Jie
    Wang, Nan
    Guo, Long
    Zhuo, Zhiqing
    Yang, Yuanyuan
    Liu, Yaolin
    Mouazen, Abdul Mounem
    Shi, Zhou
    GEODERMA, 2022, 426
  • [45] Nitrogen content inversion based on large sample soil spectral library
    Zhou, Lianqing, 1600, Chinese Optical Society (34):
  • [46] Exploring the Potential of Spectral Classification in Estimation of Soil Contaminant Elements
    Sun, Weichao
    Zhang, Xia
    Zou, Bin
    Wu, Taixia
    REMOTE SENSING, 2017, 9 (06)
  • [47] Strategies for predicting soil organic matter in the field using the Chinese Vis-NIR soil spectral library
    Yang, Meihua
    Chen, Songchao
    Xu, Dongyun
    Hong, Yongsheng
    Li, Shuo
    Peng, Jie
    Ji, Wenjun
    Guo, Xi
    Zhao, Xiaomin
    Shi, Zhou
    GEODERMA, 2023, 433
  • [48] Use of Spectral Character to Evaluate Soil Organic Matter
    Wang, Chao
    Feng, Mei-chen
    Yang, Wu-de
    Ding, Guang-wei
    Wang, Hui-qin
    Li, Zhi-hua
    Sun, Hui
    Shi, Chao-chao
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2016, 80 (04) : 1078 - 1088
  • [49] SOIL SPECTRAL MAPPING AND ITS CORRELATION WITH THE TRADITIONAL METHODOLOGY
    Chicati, Marcelo Luiz
    Nanni, Marcos Rafael
    Cezar, Everson
    de Oliveira, Roney Berti
    Chicati, Monica Sacioto
    BOLETIM DE CIENCIAS GEODESICAS, 2018, 24 (02): : 202 - 216
  • [50] SOIL CLASSIFICATION AND SOIL MAPS OF CUBA
    KLIMESSZMIK, A
    AGROKEMIA ES TALAJTAN, 1982, 31 (3-4): : 426 - 436