Deep Learning-Based Surveillance System for Coconut Disease and Pest Infestation Identification

被引:3
|
作者
Vidhanaarachchi, S. P. [1 ]
Akalanka, P. K. G. C. [1 ]
Gunasekara, R. P. T., I [1 ]
Rajapaksha, H. M. U. D. [1 ]
Aratchige, N. S. [2 ]
Lunugalage, Dilani [1 ]
Wijekoon, Janaka L. [1 ]
机构
[1] Sri Lanka Inst Informat Technol, Fac Comp, New Kandy Rd, Malabe, Sri Lanka
[2] Coconut Res Inst, Crop Protect Div, Lunuwila, Sri Lanka
关键词
Coconut diseases; Pest control; CNN; Mask R-CNN; YOLOV5; Disease dispersion; Crowdsourcing; Image processing;
D O I
10.1109/TENCON54134.2021.9707404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The coconut industry which contributes 0.8% to the national GDP is severely affected by diseases and pests. Weligama coconut leaf wilt disease and coconut caterpillar infestation are the most devastating; hence early detection is essential to facilitate control measures. Management strategies must reach approximately 1.1 million coconut growers with a wide range of demographics. This paper reports a smart solution that assists the stakeholders by detecting and classifying the disease, infestation, and deficiency for the sustainable development of the coconut industry. It leads to the early detections and makes stakeholders aware about the dispersions to take necessary control measures to save the coconut lands from the devastation. The results obtained from the proposed method for the identifications of disease, pest, deficiency, and degree of diseased conditions are in the range of 88% - 97% based on the performance evaluations.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 50 条
  • [41] Deep Learning-Based Oyster Packaging System
    Zhang, Ruihua
    Chen, Xujun
    Wan, Zhengzhong
    Wang, Meng
    Xiao, Xinqing
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [42] A deep learning-based binocular perception system
    SUN Zhao
    MA Chao
    WANG Liang
    MENG Ran
    PEI Shanshan
    Journal of Systems Engineering and Electronics, 2021, 32 (01) : 7 - 20
  • [43] A deep learning-based binocular perception system
    Sun Zhao
    Ma Chao
    Wang Liang
    Meng Ran
    Pei Shanshan
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2021, 32 (01) : 7 - 20
  • [44] Deep Learning-Based Driver Assistance System
    Kurtkaya, Bariscan
    Tezcan, Arda
    Taskiran, Murat
    ELECTRICA, 2023, 23 (03): : 607 - 618
  • [45] Deep learning-based identification of genetic variants: application to Alzheimer's disease classification
    Jo, Taeho
    Nho, Kwangsik
    Bice, Paula
    Saykin, Andrew J.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [46] Identification and classification of pneumonia disease using a deep learning-based intelligent computational framework
    Yi, Rong
    Tang, Lanying
    Tian, Yuqiu
    Liu, Jie
    Wu, Zhihui
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14473 - 14486
  • [47] Identification and classification of pneumonia disease using a deep learning-based intelligent computational framework
    Rong Yi
    Lanying Tang
    Yuqiu Tian
    Jie Liu
    Zhihui Wu
    Neural Computing and Applications, 2023, 35 : 14473 - 14486
  • [48] A deep learning-based disease diagnosis with intrusion detection for a secured healthcare system
    Kanna, S. K. Rajesh
    Murthy, Mantripragada Yaswanth Bhanu
    Gawali, Mahendra Bhatu
    Rubai, Saleh Muhammad
    Reddy, N. Srikanth
    Brammya, G.
    Preetha, N. S. Ninu
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (09) : 5669 - 5707
  • [49] Integrated Learning-Based Pest and Disease Detection Method for Tea Leaves
    Wang, Yinkai
    Xu, Renjie
    Bai, Di
    Lin, Haifeng
    FORESTS, 2023, 14 (05):
  • [50] A Novel Deep Learning-Based Black Fungus Disease Identification Using Modified Hybrid Learning Methodology
    Karthikeyan, S.
    Ramkumar, G.
    Aravindkumar, S.
    Tamilselvi, M.
    Ramesh, S.
    Ranjith, A.
    CONTRAST MEDIA & MOLECULAR IMAGING, 2022, 2022