机构:
Univ Sci & Technol, Lab Paul Painleve, CNRS, UMR 8524,UFR Math Pures & Appl, Lille, FranceUniv Sci & Technol, Lab Paul Painleve, CNRS, UMR 8524,UFR Math Pures & Appl, Lille, France
Matos, AC
[1
]
Van Iseghem, J
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol, Lab Paul Painleve, CNRS, UMR 8524,UFR Math Pures & Appl, Lille, FranceUniv Sci & Technol, Lab Paul Painleve, CNRS, UMR 8524,UFR Math Pures & Appl, Lille, France
Van Iseghem, J
[1
]
机构:
[1] Univ Sci & Technol, Lab Paul Painleve, CNRS, UMR 8524,UFR Math Pures & Appl, Lille, France
In this paper, we extend to simultaneous approximation the notion of Froberiius-Pade approximants: we then construct rational approximants for vector functions given by their expansion in an orthogonal series. After giving the definitions and notations for simultaneous Frobenius-Pade approximants and table. we develop recursive relations for computing different sequences in the table of approximants. We then propose algorithms to compute, in the two dimensional case, antidiagonal (Kronecker type algorithm) and diagonal sequences. (C) 2004 Elsevier B.V. All rights reserved.
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY, DECEMBER 1996, SUPPLEMENT: NUMERICAL ANALYSIS - A NUMERICAL ANALYSIS CONFERENCE IN HONOUR OF JEAN MEINGUET,
1996,
: 51
-
61