Clustering Analysis of ECG Data Streams

被引:4
|
作者
Zhang, Yue [1 ]
Liu, Yushuai [1 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Div Informat Sci & Technol, Shenzhen, Peoples R China
关键词
ECG; Clustering; Data streaming;
D O I
10.1007/978-3-319-61833-3_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
ECG signal is significant for cardiovascular diagnosis. Users may concern about the clustering result of ECG waves in recent time or the whole history. However, most existing stream clustering techniques can't give the two kinds of result at the same time. To tackle this challenge, in this paper, we propose a new stream clustering algorithm, DenstreamD, which can be used to meet the requirement. The core idea of DenstreamD is based on Denstream but to add decay potential core micro-clusters in the online maintenance phase. Comprehensive experiments are conducted using MIT-BIH Long-Term ECG database to demonstrate the effectiveness of proposed algorithms. The experiments show that DenstreamD has better accuracy and efficiency than its original algorithm while obtaining two kinds of clustering results.
引用
收藏
页码:304 / 311
页数:8
相关论文
共 50 条
  • [41] Divisive clustering of high dimensional data streams
    David P. Hofmeyr
    Nicos G. Pavlidis
    Idris A. Eckley
    Statistics and Computing, 2016, 26 : 1101 - 1120
  • [42] Efficient incremental subspace clustering in data streams
    Kontaki, Maria
    Papadopoulos, Apostolos N.
    Manolopoulos, Yannis
    10TH INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, 2006, : 53 - 60
  • [43] Active clustering data streams with affinity propagation
    Abdulah, Sameh
    Atwa, Walid
    Abdelmoniem, Ahmed M.
    ICT EXPRESS, 2022, 8 (02): : 276 - 282
  • [44] Divisive clustering of high dimensional data streams
    Hofmeyr, David P.
    Pavlidis, Nicos G.
    Eckley, Idris A.
    STATISTICS AND COMPUTING, 2016, 26 (05) : 1101 - 1120
  • [45] Intelligent Clustering Scheme for Log Data Streams
    Joshi, Basanta
    Bista, Umanga
    Ghimire, Manoj
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2014, PART II, 2014, 8404 : 454 - 465
  • [46] A Clustering Approach for Anonymizing Distributed Data Streams
    Mohamed, Mona A.
    Nagi, Magdy H.
    Ghanem, Sahar M.
    PROCEEDINGS OF 2016 11TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES), 2016, : 9 - 16
  • [47] SPARSE SUBSPACE CLUSTERING FOR EVOLVING DATA STREAMS
    Sui, Jinping
    Liu, Zhen
    Liu, Li
    Jung, Alexander
    Liu, Tianpeng
    Peng, Bo
    Li, Xiang
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7455 - 7459
  • [48] Suggested Techniques for Clustering and Mining of Data Streams
    Anuradha, G.
    Roy, Bidisha
    2014 INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, COMMUNICATION AND INFORMATION TECHNOLOGY APPLICATIONS (CSCITA), 2014, : 265 - 270
  • [49] On High Dimensional Projected Clustering of Data Streams
    Charu C. Aggarwal
    Jiawei Han
    Jianyong Wang
    Philip S. Yu
    Data Mining and Knowledge Discovery, 2005, 10 : 251 - 273
  • [50] Clustering Data Streams: A Complex Network Approach
    Porto, Sandy
    Quiles, Marcos G.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT I: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 1-4, 2019, PROCEEDINGS, PT I, 2019, 11619 : 52 - 65