Superconducting-Semiconductor Quantum Devices: From Qubits to Particle Detectors

被引:13
|
作者
Shim, Yun-Pil [1 ,2 ]
Tahan, Charles [3 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Lab Phys Sci, College Pk, MD 20742 USA
[3] Lab Phys Sci, College Pk, MD 20740 USA
关键词
Quantum effect semiconductor devices; semiconductor devices; semiconductor materials; superconducting devices; superconducting materials; TRANSITION;
D O I
10.1109/JSTQE.2014.2358208
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent improvements in materials growth and fabrication techniques may finally allow for superconducting semiconductors to realize their potential. Here, we build on a recent proposal to construct superconducting devices such as wires, Josephson junctions, and qubits inside and out-of single crystal silicon or germanium. Using atomistic fabrication techniques such as STM hydrogen lithography, heavily doped superconducting regions within a single crystal could be constructed. We describe the characteristic parameters of basic superconducting elements-a 1-D wire and a tunneling Josephson junction-and estimate the values for boron-doped silicon. The epitaxial, single-crystal nature of these devices, along with the extreme flexibility in device design down to the single-atom scale, may enable lower noise or new types of devices and physics. We consider applications for such supersilicon devices, showing that the state-of-the-art transmon qubit and the sought-after phase-slip qubit can both be realized. The latter qubit leverages the natural high kinetic inductance of these materials. Building on this, we explore how kinetic inductance-based particle detectors (e.g., photon or phonon) could be realized with potential application in astronomy or nanomechanics. We discuss supersemi devices (such as in silicon, germanium, or diamond) which would not require atomistic fabrication approaches and could be realized today.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Computed Models of Natural Radiation Backgrounds in Qubits and Superconducting Detectors
    Fowler, Joseph
    Florang, Ian Fogarty
    Nakamura, Nathan
    Swetz, Daniel
    Szypryt, Paul
    Ullom, Joel
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2025, 35 (05)
  • [42] QUANTUM DETECTORS IN SUPERCONDUCTING YBCO
    BLUZER, N
    FORRESTER, MG
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1995, 5 (02) : 2583 - 2586
  • [43] Special issue on quantum computing with superconducting qubits
    Alexander N. Korotkov
    Quantum Information Processing, 2009, 8 : 51 - 54
  • [44] Adiabatic quantum simulations with driven superconducting qubits
    Roth, Marco
    Moll, Nikolaj
    Salis, Gian
    Ganzhorn, Marc
    Egger, Daniel J.
    Filipp, Stefan
    Schmidt, Sebastian
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [45] A blueprint for demonstrating quantum supremacy with superconducting qubits
    Neill, C.
    Roushan, P.
    Kechedzhi, K.
    Boixo, S.
    Isakov, S. V.
    Smelyanskiy, V.
    Megrant, A.
    Chiaro, B.
    Dunsworth, A.
    Arya, K.
    Barends, R.
    Burkett, B.
    Chen, Y.
    Chen, Z.
    Fowler, A.
    Foxen, B.
    Giustina, M.
    Graff, R.
    Jeffrey, E.
    Huang, T.
    Kelly, J.
    Klimov, P.
    Lucero, E.
    Mutus, J.
    Neeley, M.
    Quintana, C.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Neven, H.
    Martinis, J. M.
    SCIENCE, 2018, 360 (6385) : 195 - 198
  • [46] Phase-space theory for dispersive detectors of superconducting qubits
    Serban, I.
    Solano, E.
    Wilhelm, F. K.
    PHYSICAL REVIEW B, 2007, 76 (10)
  • [47] Multilevel quantum description of decoherence in superconducting qubits
    Burkard, G
    Koch, RH
    DiVincenzo, DP
    PHYSICAL REVIEW B, 2004, 69 (06):
  • [48] Coherent router for quantum networks with superconducting qubits
    Christensen, K. S.
    Rasmussen, S. E.
    Petrosyan, D.
    Zinner, N. T.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [49] Accelerated Quantum Adiabatic Transfer in Superconducting Qubits
    Zheng, Wen
    Xu, Jianwen
    Wang, Zhimin
    Dong, Yuqian
    Lan, Dong
    Tan, Xinsheng
    Yu, Yang
    PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [50] Materials physics and quantum coherence in superconducting qubits
    Beasley, MR
    JOURNAL OF SUPERCONDUCTIVITY, 2004, 17 (05): : 663 - 667