A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications

被引:57
|
作者
Li, Mingqiang [1 ,2 ]
Scott, Keith [1 ]
机构
[1] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Dalian Univ Technol, Sch Energy & Power Engn, Dalian, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Porous PTFE; PBI; High temperature PEMFC; Fuel cell; Composite membrane; Proton conductivity; ACID DOPED POLYBENZIMIDAZOLE; COMPOSITE MEMBRANES; PHOSPHORIC-ACID; OPERATION; PERFORMANCE; CONDUCTIVITY; PHOSPHATE; PYRIDINE;
D O I
10.1016/j.electacta.2009.11.044
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Poly(tetrafluoroethylene) PTFE/PBI composite membranes doped with H3PO4 were fabricated to improve the performance of high temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The composite membranes were fabricated by immobilising polybenzimidazole (PBI) solution into a hydrophobic porous PTFE membrane. The mechanical strength of the membrane was good exhibiting a maximum load of 35 19 MPa. After doping with the phosphoric acid. the composite membrane had a larger proton conductivity than that of PBI doped with phosphoric acid. The PTFE/PBI membrane conductivity was greater than 0 3 S cm(-1) at a relative humidity 8.4% and temperature of 180 degrees C with a 300% H3PO4 doping level. Use of the membrane in a fuel cell with oxygen, at 1 bar overpressure gave a peak power density of 1 2 W cm(-2) at cell voltages >0 4 V and current densities of 3.0Acm(-2) The PTFE/PBI/H3PO4 composite membrane did not exhibit significant degradation after 50 h of intermittent operation at 150 degrees C. These results indicate that the composite membrane is a promising material for vehicles driven by high temperature PEMFCs. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2123 / 2128
页数:6
相关论文
共 50 条
  • [41] Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review
    Zucconi, Adam
    Hack, Jennifer
    Stocker, Richard
    Suter, Theo A. M.
    Rettie, Alexander J. E.
    Brett, Dan J. L.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (14) : 8014 - 8064
  • [42] Influence of carbon monoxide on the cathode in high-temperature polymer electrolyte membrane fuel cells
    Sondergaard, S.
    Cleemann, L. N.
    Jensen, J. O.
    Bjerrum, N. J.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (05) : 3309 - 3315
  • [43] Advances in Ion Conducting Membranes and Binders for High Temperature Polymer Electrolyte Membrane Fuel Cells
    Jung, Jiyoon
    Ku, Jinsuk
    Park, Young Sang
    Ahn, Cheol-Hee
    Lee, Jung-Hyun
    Hwang, Seung Sang
    Lee, Albert S.
    [J]. POLYMER REVIEWS, 2022, 62 (04) : 789 - 825
  • [44] Developing high-temperature CO tolerant polymer electrolyte membrane fuel cells.
    Tulyani, S
    Adjemian, KT
    Krishnan, L
    Yang, C
    Srinivasan, S
    Bocarsly, A
    Benziger, J
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U572 - U573
  • [45] Experimental Analysis on the Influence of Operating Profiles on High Temperature Polymer Electrolyte Membrane Fuel Cells
    Chinese, Tancredi
    Ustolin, Federico
    Marmiroli, Benedetta
    Amenitsch, Heinz
    Taccani, Rodolfo
    [J]. ENERGIES, 2021, 14 (20)
  • [46] Emerging membrane materials for high temperature polymer electrolyte fuel cells: durable hydrocarbon ionomers
    Miyatake, Kenji
    Watanabe, Masahiro
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (46) : 4465 - 4467
  • [47] Water distribution in high temperature polymer electrolyte fuel cells
    Reimer, Uwe
    Ehlert, Jannik
    Janssen, Holger
    Lehnert, Werner
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (03) : 1837 - 1845
  • [48] Characterizing membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells using design of experiments
    Rahim, Yasser
    Janssen, Holger
    Lehnert, Werner
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (02) : 1189 - 1202
  • [49] Evaluation of Electrolyte Additives for High-Temperature Polymer Electrolyte Fuel Cells
    Mack, Florian
    Galbiati, Samuele
    Gogel, Viktor
    Joerissen, Ludwig
    Zeis, Roswitha
    [J]. CHEMELECTROCHEM, 2016, 3 (05): : 770 - 773
  • [50] Side Chain Crosslinking of Aromatic Polyethers for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications
    Voege, Andrea
    Deimede, Valadoula A.
    Kallitsis, Joannis K.
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2012, 50 (02) : 207 - 216