Exciton energy transfer in organic light emitting diodes with thermally activated delayed fluorescence dopants

被引:11
|
作者
Lyskov, Igor [1 ]
Etinski, Mihajlo [2 ]
Marian, Christel M. [3 ]
Russo, Salvy P. [1 ]
机构
[1] RMIT Univ, Sch Sci, Chem & Quantum Phys Grp, ARC Ctr Excellence Exciton Sci, Melbourne, Vic 3000, Australia
[2] Univ Belgrade, Fac Phys Chem, Studentski Trg 12-16, Belgrade 11000, Serbia
[3] Heinrich Heine Univ Dusseldorf, Inst Theoret & Computat Chem, Univ Str 1, D-40225 Dusseldorf, Germany
基金
澳大利亚研究理事会;
关键词
PHOTOLUMINESCENCE QUANTUM YIELD; ELECTROLUMINESCENCE EFFICIENCY; DEGRADATION MECHANISMS; UP-CONVERSION; BASIS-SETS; HOST; STRATEGY;
D O I
10.1039/c8tc01992d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular systems exhibiting thermally activated delayed fluorescence (TADF) are widely used as fluorescent dopants in organic light-emitting diodes (OLEDs) due to their capacity to harvest triplet excitons. The optoelectronic properties of a TADF-based OLED can be further improved by co-depositing a highly luminescent fluorophore into the emissive layer. In a double-dopant architecture, electrically generated excitons on the TADF molecules are transmitted to the fluorescent emitter for radiative recombination. In this theoretical study, we investigate the ability of singlet excitons on PXZ-TRZ to non-radiatively hop to Rubrene by varying the ambient temperature and solvent polarity. The non-zero probability of the exciton energy transfer is attributed to the vibronic interaction between the charge-transfer (CT) and optically bright high-lying states of the TADF monomer. We systematically extend the outcome of our calculations to a similar class of dimers and discuss how the preferential orientation of linear shaped TADF molecules and their complementary fluorophores can enhance the efficiency of energy transfer.
引用
收藏
页码:6860 / 6868
页数:9
相关论文
共 50 条
  • [21] Spiro-Based Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes
    Deng, Yun
    Li, Yue
    Li, Xiaoyan
    Yu, Fan
    Li, Hao
    Zhu, Shoujia
    Wang, Bingyang
    Chen, Zhikuan
    Feng, Quanyou
    Xie, Linghai
    Huang, Wei
    ADVANCED OPTICAL MATERIALS, 2025, 13 (05):
  • [22] Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes
    Zhang, Qisheng
    Li, Jie
    Shizu, Katsuyuki
    Huang, Shuping
    Hirata, Shuzo
    Miyazaki, Hiroshi
    Adachi, Chihaya
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (36) : 14706 - 14709
  • [23] Solution-processable thermally activated delayed fluorescence emitters for application in organic light emitting diodes
    Suzuki, Katsuaki
    Adachi, Chihaya
    Kaji, Hironori
    JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2017, 25 (08) : 480 - 485
  • [24] Numerical Device Model for Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence
    van der Zee, Bas
    Li, Yungui
    Wetzelaer, Gert-Jan A. H.
    Blom, Paul W. M.
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (07)
  • [25] Novel tetracoordinated organoboron emitters for thermally activated delayed fluorescence organic light-emitting diodes
    Huang, Taian
    Chen, Zhanxiang
    Zou, Yang
    Gong, Shaolong
    Yang, Chuluo
    DYES AND PIGMENTS, 2021, 188
  • [26] Isomeric thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes
    Liu, Yanyan
    Yang, Jiaji
    Mao, Zhu
    Wang, Yuyuan
    Zhao, Juan
    Su, Shi-Jian
    Chi, Zhenguo
    CHEMICAL SCIENCE, 2023, 14 (06) : 1551 - 1556
  • [27] Degradation Mechanisms of Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Molecules
    Sandanayaka, Atula S. D.
    Matsushima, Toshinori
    Adachi, Chihaya
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (42): : 23845 - 23851
  • [28] Recent progress in thermally activated delayed fluorescence emitters for nondoped organic light-emitting diodes
    Shi, Yi-Zhong
    Wu, Hao
    Wang, Kai
    Yu, Jia
    Ou, Xue-Mei
    Zhang, Xiao-Hong
    CHEMICAL SCIENCE, 2022, 13 (13) : 3625 - 3651
  • [29] Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes
    Tzu-Chieh Lin
    Monima Sarma
    Yi-Ting Chen
    Shih-Hung Liu
    Ke-Ting Lin
    Pin-Yi Chiang
    Wei-Tsung Chuang
    Yi-Chen Liu
    Hsiu-Fu Hsu
    Wen-Yi Hung
    Wei-Chieh Tang
    Ken-Tsung Wong
    Pi-Tai Chou
    Nature Communications, 9
  • [30] Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes
    Lin, Tzu-Chieh
    Sarma, Monima
    Chen, Yi-Ting
    Liu, Shih-Hung
    Lin, Ke-Ting
    Chiang, Pin-Yi
    Chuang, Wei-Tsung
    Liu, Yi-Chen
    Hsu, Hsiu-Fu
    Hung, Wen-Yi
    Tang, Wei-Chieh
    Wong, Ken-Tsung
    Chou, Pi-Tai
    NATURE COMMUNICATIONS, 2018, 9