Effect of copper impurity in ammonia leachate on the structure and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathode material

被引:7
|
作者
Cao, Ning [1 ]
Zhang, Yali [1 ]
Chen, Linlin [1 ]
Jia, Yun [1 ]
Huang, Yaoguo [1 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Shandong, Peoples R China
关键词
Lithium-ion battery; Ammonia leachate; Re-preparation; Copper impurity; LITHIUM-ION BATTERIES; VALUABLE METALS; RECOVERY; EXTRACTION; SEPARATION; OXIDATION; MANGANESE;
D O I
10.1016/j.vacuum.2022.110975
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ammonia leaching method can efficiently recover the spent Lithium-ion batteries (LIBs), and the reuse of ammonia leachate is a difficult problem. In this study, a method of directly preparing LIBs ternary cathode materials by ammonia leachate using the co-precipitation method is proposed for the first time. The results show that the NCM-0 material prepared by ammonia leachate showed the first charge specific capacity of 208.187 mA..h.g(-1) at 0.1C. The effect of Cu impurity content in ammonia leachate on the ternary cathode materials is explored. The scanning electron micrometer (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical properties analysis of the cathode materials with different Cu impurity content show that an appropriate amount of Cu2+ doping in the ammonia leachate will reduce the Li+/Ni2+ cation mixing and stabilize the layered structure of the materials, and form stoma that is conducive to the transfer of charge and reduce the charge transfer resistance. In this research, the ammonia leachate is successfully prepared to ternary cathode materials, and the effect of Cu2+ doping in the ammonia leachate is explored.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Ge-doped LiNi0.6Co0.2Mn0.2O2 cathode material for elevated electrochemical performance of lithium ion batteries
    Zhao, Xinxin
    Ruan, Qixuan
    He, Pan
    Guo, Yan
    Yan, Xiaoyan
    Zhang, Xiaohua
    Liu, Baosheng
    Chen, Huiqin
    Fan, Jianhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1020
  • [42] Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material
    Huang, Zhenjun
    Wang, Zhixing
    Jing, Qun
    Guo, Huajun
    Li, Xinhai
    Yang, Zhihua
    ELECTROCHIMICA ACTA, 2016, 192 : 120 - 126
  • [43] Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries
    Tao, Tao
    Chen, Chao
    Yao, Yingbang
    Liang, Bo
    Lu, Shengguo
    Chen, Ying
    CERAMICS INTERNATIONAL, 2017, 43 (17) : 15173 - 15178
  • [44] Enhanced Structural Stability and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Materials by Ga Doping
    Liu, Zhibei
    Li, Jiangang
    Zhu, Meijie
    Wang, Li
    Kang, Yuqiong
    Dang, Zhaohan
    Yan, Jiasen
    He, Xiangming
    MATERIALS, 2021, 14 (08)
  • [45] The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution
    Yue, Peng
    Wang, Zhixing
    Li, Xinhai
    Xiong, Xunhui
    Wang, Jiexi
    Wu, Xianwen
    Guo, Huajun
    ELECTROCHIMICA ACTA, 2013, 95 : 112 - 118
  • [46] Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures
    Liu, Siyang
    Dang, Zhiyan
    Liu, Da
    Zhang, Congcong
    Huang, Tao
    Yu, Aishui
    JOURNAL OF POWER SOURCES, 2018, 396 : 288 - 296
  • [47] Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge
    Kim, Bong Jin
    Yoon, Geonwoo
    Song, Inje
    Ryu, Ji Heon
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2023, 26 (01): : 11 - 18
  • [48] Understanding fundamental effects of Cu impurity in different forms for recovered LiNi0.6Co0.2Mn0.2O2 cathode materials
    Zhang, Ruihan
    Meng, Zifei
    Ma, Xiaotu
    Chen, Mengyuan
    Chen, Bin
    Zheng, Yadong
    Yao, Zeyi
    Vanaphuti, Panawan
    Bong, Sungyool
    Yang, Zhenzhen
    Wang, Yan
    NANO ENERGY, 2020, 78
  • [49] Improved electrochemical properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by Al2O3 coating
    Mao, Liping
    Ai, Ling
    Li, Shiyou
    Hou, Qian
    Xie, Yingchun
    Liang, Youwei
    Xie, Jing
    ADVANCES IN ENERGY SCIENCE AND ENVIRONMENT ENGINEERING II, 2018, 1944
  • [50] Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating
    Cho, Woosuk
    Kim, Sang-Min
    Song, Jun Ho
    Yim, Taeeun
    Woo, Sang-Gil
    Lee, Ko-Woon
    Kim, Jeom-Soo
    Kim, Young-Jun
    JOURNAL OF POWER SOURCES, 2015, 282 : 45 - 50