A Low Inertia Guided Auto-Encoder for Anomaly Detection in Networks

被引:0
|
作者
Nguimbous, Yves Nsoga [1 ]
Ksantini, Riadh [2 ]
Bouhoula, Adel [3 ]
机构
[1] Higher Sch Commun Tunis, Digital Secur Res Lab, Tunis, Tunisia
[2] Univ Bahrain, Dept Comp Sci, Coll IT, Zallaq, Bahrain
[3] Arabian Gulf Univ, Coll Grad Studies, Manama, Bahrain
关键词
Auto-encoder; Variance; Inertia; One-class Classification; Anomaly/Intrusion Detection;
D O I
10.23919/softcom50211.2020.9238237
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the case of One-class classification, the low variance directions tend to be more informative to build a model on target class. This paper introduces a low Inertia Auto-encoder for anomaly detection. The proposed model emphasizes the low Inertia when training the network with gradient descent algorithm. The low Inertia Auto-encoder model is able to improve upon the classical Auto-encoder by incorporating a regularization term into the loss function, which is the Inertia of low dimensional data embedded in the Auto-encoder hidden layer. Experimental results, on KDDCup99 network traffic connections and Aegean WiFi Intrusion Dataset, have demonstrated clearly that our method has provided significantly better detection performance than the classical Auto-encoder. In fact, low inertia Auto-encoder allows better separation between reconstruction error distributions of normal data and anomalies.
引用
收藏
页码:71 / 76
页数:6
相关论文
共 50 条
  • [31] Unsupervised Anomaly Detection in Flight Data Using Convolutional Variational Auto-Encoder
    Memarzadeh, Milad
    Matthews, Bryan
    Avrekh, Ilya
    [J]. AEROSPACE, 2020, 7 (08)
  • [32] Appearance-Motion United Auto-Encoder Framework for Video Anomaly Detection
    Liu, Yang
    Liu, Jing
    Lin, Jieyu
    Zhao, Mengyang
    Song, Liang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (05) : 2498 - 2502
  • [33] An Anomaly Detection Method to Detect Web Attacks Using Stacked Auto-Encoder
    Vartouni, Ali Moradi
    Kashi, Saeed Sedighian
    Teshnehlab, Mohammad
    [J]. 2018 6TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2018, : 131 - 134
  • [34] Optimization of Reconstruction Accuracy of Anomaly Position Based on Stacked Auto-Encoder Neural Networks
    Wang, Huiquan
    Wu, Nian
    Cai, Yu
    Ren, Lina
    Zhao, Zhe
    Han, Guang
    Wang, Jinhai
    [J]. IEEE ACCESS, 2019, 7 : 116578 - 116584
  • [35] Auto-Encoder Guided GAN for Chinese Calligraphy Synthesis
    Lyu, Pengyuan
    Bai, Xiang
    Yao, Cong
    Zhu, Zhen
    Huang, Tengteng
    Liu, Wenyu
    [J]. 2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 1095 - 1100
  • [36] Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications
    Xu, Haowen
    Chen, Wenxiao
    Zhao, Nengwen
    Li, Zeyan
    Bu, Jiahao
    Li, Zhihan
    Liu, Ying
    Zhao, Youjian
    Pei, Dan
    Feng, Yang
    Chen, Jie
    Wang, Zhaogang
    Qiao, Honglin
    [J]. WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 187 - 196
  • [37] Residual Error Based Anomaly Detection Using Auto-Encoder in SMD Machine Sound
    Oh, Dong Yul
    Yun, Il Dong
    [J]. SENSORS, 2018, 18 (05)
  • [38] A re-optimized deep auto-encoder for gas turbine unsupervised anomaly detection
    Fu, Song
    Zhong, Shisheng
    Lin, Lin
    Zhao, Minghang
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 101
  • [39] Dual Auto-Encoder GAN-Based Anomaly Detection for Industrial Control System
    Chen, Lei
    Li, Yuan
    Deng, Xingye
    Liu, Zhaohua
    Lv, Mingyang
    Zhang, Hongqiang
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [40] Searching for modules of networks in the auto-encoder frame
    Angelini, L.
    Marinazzo, D.
    Pellicoro, M.
    Stramaglia, S.
    Boccaletti, S.
    [J]. COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 332 - +