A Low Inertia Guided Auto-Encoder for Anomaly Detection in Networks

被引:0
|
作者
Nguimbous, Yves Nsoga [1 ]
Ksantini, Riadh [2 ]
Bouhoula, Adel [3 ]
机构
[1] Higher Sch Commun Tunis, Digital Secur Res Lab, Tunis, Tunisia
[2] Univ Bahrain, Dept Comp Sci, Coll IT, Zallaq, Bahrain
[3] Arabian Gulf Univ, Coll Grad Studies, Manama, Bahrain
关键词
Auto-encoder; Variance; Inertia; One-class Classification; Anomaly/Intrusion Detection;
D O I
10.23919/softcom50211.2020.9238237
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the case of One-class classification, the low variance directions tend to be more informative to build a model on target class. This paper introduces a low Inertia Auto-encoder for anomaly detection. The proposed model emphasizes the low Inertia when training the network with gradient descent algorithm. The low Inertia Auto-encoder model is able to improve upon the classical Auto-encoder by incorporating a regularization term into the loss function, which is the Inertia of low dimensional data embedded in the Auto-encoder hidden layer. Experimental results, on KDDCup99 network traffic connections and Aegean WiFi Intrusion Dataset, have demonstrated clearly that our method has provided significantly better detection performance than the classical Auto-encoder. In fact, low inertia Auto-encoder allows better separation between reconstruction error distributions of normal data and anomalies.
引用
收藏
页码:71 / 76
页数:6
相关论文
共 50 条
  • [1] Hyperspectral Anomaly Detection Method Based on Auto-encoder
    Bati, Emrecan
    Caliskan, Akin
    Koz, Alper
    Alatan, A. Aydin
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
  • [2] Hyperspectral Anomaly Detection with Auto-Encoder and Independent Target
    Chen, Shuhan
    Li, Xiaorun
    Yan, Yunfeng
    [J]. REMOTE SENSING, 2023, 15 (22)
  • [3] Anomaly-based Intrusion Detection Using Auto-encoder
    Nguimbous, Yves Nsoga
    Ksantini, Riadh
    Bouhoula, Adel
    [J]. 2019 27TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2019, : 505 - 509
  • [4] Anomaly Detection for Medical Images Using Heterogeneous Auto-Encoder
    Lu, Shuai
    Zhang, Weihang
    Zhao, He
    Liu, Hanruo
    Wang, Ningli
    Li, Huiqi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2770 - 2782
  • [5] Anomaly detection method based on convolutional variational auto-encoder
    Yu, Xiaosheng
    Xu, Ming
    Wang, Ying
    Wang, Siqi
    Hu, Nan
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (05): : 151 - 158
  • [6] PATCH-WISE AUTO-ENCODER FOR VISUAL ANOMALY DETECTION
    Cui, Yajie
    Liu, Zhaoxiang
    Lian, Shiguo
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 870 - 874
  • [7] A Multilayer LSTM Auto-Encoder for Fetal ECG Anomaly Detection
    Skarga-Bandurova, Inna
    Biloborodova, Tetiana
    Skarha-Bandurov, Illia
    Boltov, Yehor
    Derkach, Maryna
    [J]. PHEALTH 2021, 2021, 285 : 147 - 152
  • [8] A Convolutional Auto-encoder Method for Anomaly Detection on System Logs
    Cui, Yu
    Sun, Yiping
    Hu, Jinglu
    Sheng, Gehao
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 3057 - 3062
  • [9] Texture and semantic convolutional auto-encoder for anomaly detection and segmentation
    Luo, Jintao
    Gao, Can
    Wan, Da
    Shen, Linlin
    [J]. IET COMPUTER VISION, 2023, 17 (07) : 829 - 843
  • [10] Learning Sparse Representation With Variational Auto-Encoder for Anomaly Detection
    Sun, Jiayu
    Wang, Xinzhou
    Xiong, Naixue
    Shao, Jie
    [J]. IEEE ACCESS, 2018, 6 : 33353 - 33361