An inversion formula for the spherical transform in S2 for a special family of circles of integration

被引:0
|
作者
Salman, Yehonatan [1 ]
机构
[1] Bar Ilan Univ, Ramat Gan, Israel
关键词
D O I
10.1007/s13324-015-0105-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, an inversion formula is obtained for the spherical transform which integrates functions, defined on the unit sphere S-2, on circles. The inversion formula is for the case where the circles of integration are obtained by intersections of S-2 with hyperplanes passing through a common point (a) over bar strictly inside S-2. In particular, this yields inversion formulas for two well-known special cases. The first inversion formula is for the special case where the family of circles of integration consists of great circles; this formula is obtained by taking (a) over bar = 0. The second inversion formula is for the special case where the circles of integration pass through a common point p on S-2; this formula is obtained by taking the limit (a) over bar -> p.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 50 条
  • [31] Spherical Harmonic Transforms with S2HAT (Scalable Spherical Harmonic Transform) Library
    Fabbian, Giulio
    Szydlarski, Mikolaj
    Stompor, Radek
    Grigori, Laura
    Falcou, Joel
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXI, 2012, 461 : 61 - +
  • [32] Numerical integration of (2+1) dimensional PDEs for S2 valued functions
    Piette, B
    Zakrzewski, WJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 145 (01) : 359 - 381
  • [33] An automated tool for localization of heart sound components S1, S2, S3 and S4 in pulmonary sounds using Hilbert transform and Heron's formula
    Mondal, Ashok
    Bhattacharya, Parthasarathi
    Saha, Goutam
    SPRINGERPLUS, 2013, 2 : 1 - 14
  • [34] A trace formula for hecke operators on L2(S2) and modular forms on Γ0(4)
    J. Elstrodt
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2001, 71 : 181 - 196
  • [35] A trace formula for Hecke operators on L2(S2) and modular forms on Γ0(4)
    Elstrodt, J
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2001, 71 (1): : 181 - 196
  • [36] Coexistence Between DVB-S/S2 and DAB Systems - A Special Coexistence Scenario
    Kresta, Daniel
    Polak, Ladislav
    Kratochvil, Tomas
    2017 27TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2017, : 201 - 205
  • [37] APPLICATIONS IN PHYSICS OF SPHERICAL RADON TRANSFORM INVERSION THEOREM IN RN, N LESS-THAN-OR-EQUAL-TO 2
    BREDIMAS, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (19): : 1175 - 1178
  • [38] Real-time anomaly detection of the stochastically excited systems on spherical (S2) manifold
    Panda, Satyam
    Fitzgerald, Breiffni
    Hazra, Budhaditya
    PROBABILISTIC ENGINEERING MECHANICS, 2024, 78
  • [39] SOME PROPERTIES OF THE 1ST EIGENVALUE OF THE LAPLACE OPERATOR ON THE SPHERICAL BANDS IN S2
    SHEN, CL
    SHIEH, CT
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (05) : 1305 - 1308
  • [40] Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human Sylvian fissure
    Hinkley, Leighton B.
    Krubitzer, Leah A.
    Nagarajan, Srikantan S.
    Disbrow, Elizabeth A.
    JOURNAL OF NEUROPHYSIOLOGY, 2007, 97 (02) : 1288 - 1297