Enhanced hot electron lifetimes in quantum wells with inhibited phonon coupling

被引:36
|
作者
Esmaielpour, Hamidreza [1 ]
Whiteside, Vincent R. [1 ]
Piyathilaka, Herath P. [2 ]
Vijeyaragunathan, Sangeetha [1 ]
Wang, Bin [3 ]
Adcock-Smith, Echo [4 ]
Roberts, Kenneth P. [4 ]
Mishima, Tetsuya D. [1 ]
Santos, Michael B. [1 ]
Bristow, Alan D. [2 ]
Sellers, Ian R. [1 ]
机构
[1] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA
[2] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26501 USA
[3] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA
[4] Univ Tulsa, Dept Chem & Biochem, Tulsa, OK 74104 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会;
关键词
CONTINUOUS-WAVE PHOTOLUMINESCENCE; CARRIER RELAXATION; GAAS; TEMPERATURE; BOTTLENECK;
D O I
10.1038/s41598-018-30894-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hot electrons established by the absorption of high-energy photons typically thermalize on a picosecond time scale in a semiconductor, dissipating energy via various phonon-mediated relaxation pathways. Here it is shown that a strong hot carrier distribution can be produced using a type-II quantum well structure. In such systems it is shown that the dominant hot carrier thermalization process is limited by the radiative recombination lifetime of electrons with reduced wavefunction overlap with holes. It is proposed that the subsequent reabsorption of acoustic and optical phonons is facilitated by a mismatch in phonon dispersions at the InAs-AlAsSb interface and serves to further stabilize hot electrons in this system. This lengthens the time scale for thermalization to nanoseconds and results in a hot electron distribution with a temperature of 490 K for a quantum well structure under steady-state illumination at room temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] HOT-ELECTRON RELAXATION IN GAAS QUANTUM WELLS
    YANG, CH
    CARLSONSWINDLE, JM
    LYON, SA
    WORLOCK, JM
    PHYSICAL REVIEW LETTERS, 1985, 55 (21) : 2359 - 2361
  • [22] HOT-ELECTRON RELAXATION IN GAAS QUANTUM WELLS
    DASSARMA, S
    JAIN, JK
    JALABERT, R
    PHYSICAL REVIEW B, 1988, 37 (03): : 1228 - 1230
  • [23] Enhanced electron-phonon coupling at metal surfaces
    Plummer, EW
    Shi, JR
    Tang, SJ
    Rotenberg, E
    Kevan, SD
    PROGRESS IN SURFACE SCIENCE, 2003, 74 (1-8) : 251 - 268
  • [24] Coherent electron–phonon coupling in tailored quantum systems
    P. Roulleau
    S. Baer
    T. Choi
    F. Molitor
    J. Güttinger
    T. Müller
    S. Dröscher
    K. Ensslin
    T. Ihn
    Nature Communications, 2
  • [25] Hot Electrons and Electron-Phonon Coupling in a Cylindrical Nanoshell
    Qu, Shi-Xian
    Zhao, Ya-Ni
    Zhang, Lin
    Geller, Michael R.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (11) : 9984 - 9988
  • [26] Quantum Confinement of Electron-Phonon Coupling in Graphene Quantum Dots
    Zacharias, Marios
    Kelires, Pantelis C.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (40): : 9940 - 9946
  • [27] Lifetimes of magnetopositronium in semiconductor quantum wells
    Prokop'ev, EP
    TECHNICAL PHYSICS LETTERS, 1998, 24 (06) : 492 - 494
  • [28] Lifetimes of magnetopositronium in semiconductor quantum wells
    E. P. Prokop’ev
    Technical Physics Letters, 1998, 24 : 492 - 494
  • [29] Electrically tunable electron spin lifetimes in GaAs(111)B quantum wells
    Biermann, K.
    Hernandez-Minguez, A.
    Hey, R.
    Santos, P. V.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)
  • [30] Electrically tunable electron spin lifetimes in GaAs(111)B quantum wells
    Biermann, K. (biermann@pdi-berlin.de), 1600, American Institute of Physics Inc. (112):