A mean counting function for Dirichlet series and compact composition operators

被引:11
|
作者
Brevig, Ole Fredrik [1 ]
Perfekt, Karl-Mikael [2 ]
机构
[1] Univ Oslo, Dept Math, N-0851 Oslo, Norway
[2] Univ Reading, Dept Math & Stat, Reading RG6 6AX, Berks, England
基金
英国工程与自然科学研究理事会;
关键词
Hardy space; Dirichlet series; Composition operators; Counting function; HILBERT-SPACE; HARDY-SPACES; H-2; SPACE; NORM;
D O I
10.1016/j.aim.2021.107775
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a mean counting function for Dirichlet series, which plays the same role in the function theory of Hardy spaces of Dirichlet series as the Nevanlinna counting function does in the classical theory. The existence of the mean counting function is related to Jessen and Tornehave's resolution of the Lagrange mean motion problem. We use the mean counting function to describe all compact composition operators with Dirichlet series symbols on the Hardy-Hilbert space of Dirichlet series, thus resolving a problem which has been open since the bounded composition operators were described by Gordon and Hedenmalm. The main result is that such a composition operator is compact if and only if the mean counting function of its symbol satisfies a decay condition at the boundary of a half-plane. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:48
相关论文
共 50 条
  • [41] Approximation numbers of composition operators on a Hilbert space of Dirichlet series
    Queffelec, Herve
    INVARIANT SUBSPACES OF THE SHIFT OPERATOR, 2015, 638 : 1 - 19
  • [42] APPROXIMATION NUMBERS OF COMPOSITION OPERATORS ON Hp SPACES OF DIRICHLET SERIES
    Bayart, Frederic
    Queffelec, Herye
    Seip, Kristian
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (02) : 551 - 588
  • [43] Some properties of composition operators on Hilbert spaces of Dirichlet series
    Wang, Maofa
    Yao, Xingxing
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (07) : 992 - 1004
  • [44] COMPOSITION OPERATORS ON BOHR-BERGMAN SPACES OF DIRICHLET SERIES
    Bailleul, Maxime
    Brevig, Ole Fredrik
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 129 - 142
  • [45] Compact composition operators on the Dirichlet space and capacity of sets of contact points
    Lefevre, Pascal
    Li, Daniel
    Queffelec, Herve
    Rodriguez-Piazza, Luis
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (04) : 895 - 919
  • [46] A FUNCTION-FIELD ANALOGUE OF THE GOLDBACH COUNTING FUNCTION AND THE ASSOCIATED DIRICHLET SERIES
    Egami, Shigeki
    Matsumoto, Kohji
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (01) : 135 - 145
  • [48] Topological Structure of the Spaces of Composition Operators on Hilbert Spaces of Dirichlet Series
    Hu, Bingyang
    Khoi, Le Hai
    Zhao, Ruhan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (03): : 267 - 284
  • [49] COMPLEX SYMMETRY OF WEIGHTED COMPOSITION OPERATORS ON A HILBERT SPACE OF DIRICHLET SERIES
    Yao, Xingxing
    OPERATORS AND MATRICES, 2021, 15 (04): : 1597 - 1606
  • [50] Complex Symmetry of Composition Operators on Hilbert Spaces of Entire Dirichlet Series
    Minh Luan Doan
    Mau, Camille
    Le Hai Khoi
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (02) : 443 - 460