ARMA;
asymptotic normality;
consistency;
GARCH;
heteroskedastic time series;
maximum likelihood estimation;
D O I:
10.3150/bj/1093265632
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We prove the strong consistency and asymptotic normality of the quasi-maximum likelihood estimator of the parameters of pure generalized autoregressive conditional heteroscedastic (GARCH) processes, and of autoregressive moving-average models with noise sequence driven by;a GARCH model. Results are obtained under mild conditions.
机构:
Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China
Wang HongRui
Gao Xiong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China
Gao Xiong
Qian LongXia
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China
PLA Univ Sci & Technol, Coll Meteorol, Nanjing 211101, Jiangsu, Peoples R ChinaBeijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China
Qian LongXia
Yu Song
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China
WANG HongRuiGAO XiongQIAN LongXia YU Song College of Water SciencesBeijing Normal UniversityBeijing China College of MeteorologyPLA University of science and technologyNanjing China
论文数: 0引用数: 0
h-index: 0
WANG HongRuiGAO XiongQIAN LongXia YU Song College of Water SciencesBeijing Normal UniversityBeijing China College of MeteorologyPLA University of science and technologyNanjing China