Estimation of the parameters of symmetric stable ARMA and ARMA-GARCH models

被引:4
|
作者
Sathe, Aastha M. [1 ]
Upadhye, N. S. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
ARMA– GARCH models; stable distributions; parameter estimation; simulation;
D O I
10.1080/02664763.2021.1928019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we first propose the modified Hannan-Rissanen Method for estimating the parameters of autoregressive moving average (ARMA) process with symmetric stable noise and symmetric stable generalized autoregressive conditional heteroskedastic (GARCH) noise. Next, we propose the modified empirical characteristic function method for the estimation of GARCH parameters with symmetric stable noise. Further, we show the efficiency, accuracy and simplicity of our methods with Monte-Carlo simulation. Finally, we apply our proposed methods to model the financial data.
引用
收藏
页码:2964 / 2980
页数:17
相关论文
共 50 条
  • [1] Volatility Estimation of Multivariate ARMA-GARCH Model
    Pengfei Xie
    Jimin Ye
    Junyuan Wang
    JournalofHarbinInstituteofTechnology(NewSeries), 2020, 27 (01) : 36 - 43
  • [2] Parameter change tests for ARMA-GARCH models
    Song, Junmo
    Kang, Jiwon
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 121 : 41 - 56
  • [3] MCMC-based estimation of Markov Switching ARMA-GARCH models
    Henneke, Jan S.
    Rachev, Svetlozar T.
    Fabozzi, Frank J.
    Nikolov, Metodi
    APPLIED ECONOMICS, 2011, 43 (03) : 259 - 271
  • [4] Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes
    Francq, C
    Zakoïan, JM
    BERNOULLI, 2004, 10 (04) : 605 - 637
  • [5] Improving ARMA-GARCH forecasts for high frequency data with regime-switching ARMA-GARCH
    Zhang, Xiaochu
    Frey, Robert
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (04) : 727 - 751
  • [6] Sequential change point detection in ARMA-GARCH models
    Song, Junmo
    Kang, Jiwon
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (08) : 1520 - 1538
  • [7] Exploring the Regional Variance using ARMA-GARCH Models
    Huantian Xie
    Dingfang Li
    Lihua Xiong
    Water Resources Management, 2016, 30 : 3507 - 3518
  • [8] Exploring the Regional Variance using ARMA-GARCH Models
    Xie, Huantian
    Li, Dingfang
    Xiong, Lihua
    WATER RESOURCES MANAGEMENT, 2016, 30 (10) : 3507 - 3518
  • [9] Change point detection in copula ARMA-GARCH Models
    Na, Okyoung
    Lee, Jiyeon
    Lee, Sangyeol
    JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (04) : 554 - 569
  • [10] On change point test for ARMA-GARCH models: Bootstrap approach
    Haejune Oh
    Sangyeol Lee
    Journal of the Korean Statistical Society, 2018, 47 : 139 - 149