Dual Quaternions and Dual Quaternionic Curves

被引:7
|
作者
Dagdeviren, Ali [1 ]
Yuce, Salim [2 ]
机构
[1] THY Aviat Acad, Istanbul, Turkey
[2] Yildiz Tech Univ, Dept Math, Davutpasa Campus, Istanbul, Turkey
关键词
Dual Quaternions; Dual Quaternionic Curves; Serret-Frenet Frame;
D O I
10.2298/FIL1904037D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After a brief review of the different types of quaternions, we develop a new perspective for dual quaternions with dividing two parts. Due to this new perspective, we will define the isotropic and non-isotropic dual quaternions. Then we will also give the basic algebraic concepts about the dual quaternions. Moreover, we define isotropic dual quaternionic curves and non-isotropic dual quaternionic curves. Via these definitions we find Serret-Frenet formulae for isotropic dual quaternionic curves. Finally, we will use these results to derive the Serret-Frenet formulae for non-isotropic dual quaternionic curves.
引用
收藏
页码:1037 / 1046
页数:10
相关论文
共 50 条
  • [31] POLAR DECOMPOSITION OF UNIT DUAL QUATERNIONS
    Purwar, Anurag
    Ge, Q. J.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 4, PTS A AND B, 2012, : 1571 - 1578
  • [32] Involutions in Dual Split-Quaternions
    Bekar, Murat
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 553 - 571
  • [33] Exponential and Cayley Maps for Dual Quaternions
    J. M. Selig
    Advances in Applied Clifford Algebras, 2010, 20 : 923 - 936
  • [34] Pose-Following with Dual Quaternions
    Arrizabalaga, Jon
    Ryll, Markus
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5959 - 5966
  • [35] RELATIVE ORIENTATION DEPENDENT ON DUAL QUATERNIONS
    Sheng, Qing H.
    Shao, Sa
    Xiao, Hui
    Zhu, Feng
    Wang, Qing
    Zhang, Bin
    PHOTOGRAMMETRIC RECORD, 2015, 30 (151): : 300 - 317
  • [36] A New Aspect of Dual Fibonacci Quaternions
    Salim Yüce
    Fügen Torunbalcı Aydın
    Advances in Applied Clifford Algebras, 2016, 26 : 873 - 884
  • [37] Exponential and Cayley Maps for Dual Quaternions
    Selig, J. M.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (3-4) : 923 - 936
  • [38] Dual-hyperbolic Pell quaternions
    Aydin, Fugen Torunbalci
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (05): : 1321 - 1334
  • [39] APPLICATION OF DUAL QUATERNIONS TO STUDY OF GYRODYNAMICS
    YANG, AT
    JOURNAL OF ENGINEERING FOR INDUSTRY, 1967, 89 (01): : 137 - &
  • [40] Polar Decomposition of Unit Dual Quaternions
    Purwar, Anurag
    Ge, Q. J.
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2013, 5 (03):