Self-supervised coarse-to-fine monocular depth estimation using a lightweight attention module

被引:8
|
作者
Li, Yuanzhen [1 ]
Luo, Fei [1 ]
Xiao, Chunxia [1 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
monocular depth estimation; texture copy; depth drift; attention module; PREDICTION; SLAM;
D O I
10.1007/s41095-022-0279-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Self-supervised monocular depth estimation has been widely investigated and applied in previous works. However, existing methods suffer from texture-copy, depth drift, and incomplete structure. It is difficult for normal CNN networks to completely understand the relationship between the object and its surrounding environment. Moreover, it is hard to design the depth smoothness loss to balance depth smoothness and sharpness. To address these issues, we propose a coarse-to-fine method with a normalized convolutional block attention module (NCBAM). In the coarse estimation stage, we incorporate the NCBAM into depth and pose networks to overcome the texture-copy and depth drift problems. Then, we use a new network to refine the coarse depth guided by the color image and produce a structure-preserving depth result in the refinement stage. Our method can produce results competitive with state-of-the-art methods. Comprehensive experiments prove the effectiveness of our two-stage method using the NCBAM.
引用
收藏
页码:631 / 647
页数:17
相关论文
共 50 条
  • [31] Self-supervised monocular depth estimation for gastrointestinal endoscopy
    Liu, Yuying
    Zuo, Siyang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 238
  • [32] Self-supervised monocular depth estimation with direct methods
    Wang, Haixia
    Sun, Yehao
    Wu, Q. M. Jonathan
    Lu, Xiao
    Wang, Xiuling
    Zhang, Zhiguo
    NEUROCOMPUTING, 2021, 421 : 340 - 348
  • [33] Adaptive Self-supervised Depth Estimation in Monocular Videos
    Mendoza, Julio
    Pedrini, Helio
    IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 687 - 699
  • [34] Self-supervised monocular depth estimation with direct methods
    Wang H.
    Sun Y.
    Wu Q.M.J.
    Lu X.
    Wang X.
    Zhang Z.
    Neurocomputing, 2021, 421 : 340 - 348
  • [35] Learn to Adapt for Self-Supervised Monocular Depth Estimation
    Sun, Qiyu
    Yen, Gary G. G.
    Tang, Yang
    Zhao, Chaoqiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 13
  • [36] Self-Supervised Monocular Depth Estimation With Multiscale Perception
    Zhang, Yourun
    Gong, Maoguo
    Li, Jianzhao
    Zhang, Mingyang
    Jiang, Fenlong
    Zhao, Hongyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3251 - 3266
  • [37] Self-Supervised Monocular Depth Estimation With Multiscale Perception
    Zhang, Yourun
    Gong, Maoguo
    Li, Jianzhao
    Zhang, Mingyang
    Jiang, Fenlong
    Zhao, Hongyu
    IEEE Transactions on Image Processing, 2022, 31 : 3251 - 3266
  • [38] Self-Supervised Monocular Depth Estimation With Extensive Pretraining
    Choi, Hyukdoo
    IEEE ACCESS, 2021, 9 : 157236 - 157246
  • [39] Self-Supervised Monocular Depth Estimation with Extensive Pretraining
    Choi, Hyukdoo
    IEEE Access, 2021, 9 : 157236 - 157246
  • [40] Self-Supervised Monocular Depth Estimation Using HOG Feature Prediction
    He, Xin
    Zhao, Xiao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 382 - 387