Electromagnetic interactions in plasmonic nanoparticle arrays

被引:91
|
作者
Bouhelier, A
Bachelot, R
Im, JS
Wiederrecht, GP
Lerondel, G
Kostcheev, S
Royer, P
机构
[1] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[3] Univ Technol Troyes, Lab Nanotechnol & Instrumentat Opt, CNRS, FRE 2671, F-10010 Troyes, France
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2005年 / 109卷 / 08期
关键词
D O I
10.1021/jp046224b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single two-dimensional planar silver arrays and one-dimensional linear gold chains of nanoparticles were investigated by dark-field surface plasmon spectroscopy and studied as a function of interparticle distance, particle size, and number of particles. In agreement with recent theoretical predictions, a red shift of the surface plasmon resonance occurring in two-dimensional arrays was found for lattice spacings below 200 nm. This red shift is associated with a significant broadening of the resonance and is attributed to the onset of near-field interactions. We found that the relative contributions of the long-range and short-range interactions in two-dimensional arrays of particles are fundamentally different to those occurring in individual linear chains.
引用
收藏
页码:3195 / 3198
页数:4
相关论文
共 50 条
  • [31] On the absorption and electromagnetic field spectral shifts in plasmonic nanotriangle arrays
    Vedraine, Sylvain
    Hou, Renjie
    Norton, Peter R.
    Lagugne-Labarthet, Francois
    OPTICS EXPRESS, 2014, 22 (11): : 13308 - 13313
  • [32] Plasmonic superlattices constructed by coupling electronic systems with metal nanoparticle arrays
    Sun, Jie
    Zhang, Meng-Xi
    Yan, Jie-Yun
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (03) : 767 - 773
  • [33] Light emission enhancement using randomly distributed plasmonic nanoparticle arrays
    Butkus, J.
    Edwards, A. P.
    Quacquarelli, F. P.
    Adawi, A. M.
    OPTICAL MATERIALS, 2014, 36 (09) : 1502 - 1505
  • [34] Predicting plasmonic coupling with Mie–Gans theory in silver nanoparticle arrays
    M. Ranjan
    Journal of Nanoparticle Research, 2013, 15
  • [35] Near-field spectral properties of coupled plasmonic nanoparticle arrays
    Yu, Han
    Sun, Quan
    Yang, Jinghuan
    Ueno, Kosei
    Oshikiri, Tomoya
    Kubo, Atsushi
    Matsuo, Yasutaka
    Gong, Qihuang
    Misawa, Hiroaki
    OPTICS EXPRESS, 2017, 25 (06): : 6883 - 6894
  • [36] Formation of embedded plasmonic Ga nanoparticle arrays and their influence on GaAs photoluminescence
    Kang, M.
    Jeon, S.
    Jen, T.
    Lee, J. -E.
    Sih, V.
    Goldman, R. S.
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (03)
  • [37] Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays
    Khlopin, Dmitry
    Laux, Frederic
    Wardley, William P.
    Martin, Jerome
    Wurtz, Gregory A.
    Plain, Jerome
    Bonod, Nicolas
    Zayats, Anatoly V.
    Dickson, Wayne
    Gerard, Davy
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2017, 34 (03) : 691 - 700
  • [38] Self-assembled broadband plasmonic nanoparticle arrays for sensing applications
    Verre, R.
    Fleischer, K.
    Ualibek, O.
    Shvets, I. V.
    APPLIED PHYSICS LETTERS, 2012, 100 (03)
  • [39] Superlattice Surface Lattice Resonances in Plasmonic Nanoparticle Arrays with Patterned Dielectrics
    Wang, Danqing
    Hu, Jingtian
    Schatz, George C.
    Odom, Teri W.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (38): : 8525 - 8530
  • [40] Flexible Plasmonic Tapes with Nanohole and Nanoparticle Arrays for Refractometric and Strain Sensing
    Jia, Peipei
    Kong, Depeng
    Ebendorff-Heidepriem, Heike
    ACS APPLIED NANO MATERIALS, 2020, 3 (08) : 8242 - 8246