Alternative estimate of source distribution in microbial source tracking using posterior probabilities

被引:8
|
作者
Greenberg, Joshua [1 ]
Price, Bertram [1 ]
Ware, Adam [1 ]
机构
[1] Price Associates Inc, White Plains, NY 10601 USA
关键词
Microbial source tracking; Watershed; Source distribution; Classification; Posterior probabilities; Modeling; BACTERIAL SOURCE TRACKING; ANTIBIOTIC-RESISTANCE PATTERNS; FECAL CONTAMINATION; CLASSIFICATION; POLLUTION;
D O I
10.1016/j.watres.2010.01.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial source tracking (MST) is a procedure used to determine the relative contributions of humans and animals to fecal microbial contamination of surface waters in a given watershed. Studies of MST methodology have focused on optimizing sampling, laboratory, and statistical analysis methods in order to improve the reliability of determining which sources contributed most to surface water fecal contaminant. The usual approach for estimating a source distribution of microbial contamination is to classify water sample microbial isolates into discrete source categories and calculate the proportion of these isolates in each source category. The set of proportions is an estimate of the contaminant source distribution. In this paper we propose and compare an alternative method for estimating a source distribution averaging posterior probabilities of source identity across isolates. We conducted a Monte Carlo simulation covering a wide variety of watershed scenarios to compare the two methods. The results show that averaging source posterior probabilities across isolates leads to more accurate source distribution estimates than proportions that follow classification. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2629 / 2637
页数:9
相关论文
共 50 条
  • [21] Microbial source tracking for identification of fecal pollution
    Seurinck S.
    Verstraete W.
    Siciliano S.D.
    Reviews in Environmental Science and Bio/Technology, 2005, 4 (1-2) : 19 - 37
  • [22] Ecology, DNA, and the Future of Microbial Source Tracking
    Michael Witty
    James Nickels
    Jessica Lisa
    John Tiedemann
    Water, Air, and Soil Pollution, 2009, 201 : 219 - 232
  • [23] Machine learning methods for microbial source tracking
    Belanche-Munoz, Lluis
    Blanch, Anicet R.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (06) : 741 - 750
  • [24] A consensus: microbial source tracking (MST) in water
    Stratton, Helen
    Ahmed, Warish
    Katouli, Mohammad
    MICROBIOLOGY AUSTRALIA, 2009, 30 (01) : 30 - 32
  • [25] Microbial Source Tracking in a Watershed Dominated by Swine
    Liwimbi, Lloyd
    Graves, Alexandria K.
    Israel, Daniel W.
    van Heugten, Eric
    Robinson, Bradford
    Cahoon, Charles W.
    Lubbers, Joice F.
    WATER, 2010, 2 (03) : 587 - 604
  • [26] Use of metagenomic microbial source tracking to investigate the source of a foodborne outbreak of cryptosporidiosis
    Ahlinder, J.
    Svedberg, A-L
    Nystedt, A.
    Dryselius, R.
    Jacobsson, K.
    Hagglund, M.
    Brindefalk, B.
    Forsman, M.
    Ottoson, J.
    Troell, K.
    FOOD AND WATERBORNE PARASITOLOGY, 2022, 26
  • [27] NEUTRON COLLISION PROBABILITIES IN SPHERES WITH PARABOLIC SOURCE DISTRIBUTION
    LEUTHAUS.KD
    ATOMKERNENERGIE, 1973, 21 (02): : 160 - 160
  • [28] Generative Alignment of Posterior Probabilities for Source-free Domain Adaptation
    Chhabra, Sachin
    Venkateswara, Hemanth
    Li, Baoxin
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 4114 - 4123
  • [29] Microbial source tracking using host specific FAME profiles of fecal coliforms
    Duran, M
    Haznedaroglu, BZ
    Zitomer, DH
    WATER RESEARCH, 2006, 40 (01) : 67 - 74
  • [30] Source tracking of microbial intrusion in water systems using artificial neural networks
    Kim, Minyoung
    Choi, Christopher Y.
    Gerba, Charles R.
    WATER RESEARCH, 2008, 42 (4-5) : 1308 - 1314