Alternative estimate of source distribution in microbial source tracking using posterior probabilities

被引:8
|
作者
Greenberg, Joshua [1 ]
Price, Bertram [1 ]
Ware, Adam [1 ]
机构
[1] Price Associates Inc, White Plains, NY 10601 USA
关键词
Microbial source tracking; Watershed; Source distribution; Classification; Posterior probabilities; Modeling; BACTERIAL SOURCE TRACKING; ANTIBIOTIC-RESISTANCE PATTERNS; FECAL CONTAMINATION; CLASSIFICATION; POLLUTION;
D O I
10.1016/j.watres.2010.01.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial source tracking (MST) is a procedure used to determine the relative contributions of humans and animals to fecal microbial contamination of surface waters in a given watershed. Studies of MST methodology have focused on optimizing sampling, laboratory, and statistical analysis methods in order to improve the reliability of determining which sources contributed most to surface water fecal contaminant. The usual approach for estimating a source distribution of microbial contamination is to classify water sample microbial isolates into discrete source categories and calculate the proportion of these isolates in each source category. The set of proportions is an estimate of the contaminant source distribution. In this paper we propose and compare an alternative method for estimating a source distribution averaging posterior probabilities of source identity across isolates. We conducted a Monte Carlo simulation covering a wide variety of watershed scenarios to compare the two methods. The results show that averaging source posterior probabilities across isolates leads to more accurate source distribution estimates than proportions that follow classification. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2629 / 2637
页数:9
相关论文
共 50 条
  • [1] Microbial source tracking
    Wuertz, Stefan
    Reis, Maria
    WATER RESEARCH, 2013, 47 (18) : 6811 - 6811
  • [2] Microbial Source Tracking
    Gourmelon, Michele
    Blanch, Anicet R.
    Reischer, Georg H.
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [3] Microbial source tracking: a forensic technique for microbial source identification?
    Stapleton, Carl M.
    Wyer, Mark D.
    Kay, David
    Crowther, John
    McDonald, Adrian T.
    Walters, Martin
    Gawler, Andrew
    Hindle, Terry
    JOURNAL OF ENVIRONMENTAL MONITORING, 2007, 9 (05): : 427 - 439
  • [4] Using microbial source tracking and antibiotic resistance for environmental justice
    Hunter, Brandon
    Melogno, Lucas Rocha
    Gerhard, William
    Farling, Stewart
    Kawadiya, Siddharth
    Deshusses, Marc
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [5] Microbial source tracking using metagenomics and other new technologies
    Raza, Shahbaz
    Kim, Jungman
    Sadowsky, Michael J.
    Unno, Tatsuya
    JOURNAL OF MICROBIOLOGY, 2021, 59 (03) : 259 - 269
  • [6] Microbial source tracking using metagenomics and other new technologies
    Shahbaz Raza
    Jungman Kim
    Michael J. Sadowsky
    Tatsuya Unno
    Journal of Microbiology, 2021, 59 : 259 - 269
  • [7] MICROBIAL SOURCE TRACKING IN COASTAL WATERS
    Schriewer, Alexander
    Kim, Minji
    Wuertz, Stefan
    JOURNAL OF SHELLFISH RESEARCH, 2012, 31 (01): : 344 - 344
  • [8] Advances in microbial source tracking methods
    Zheng, Qian-Xing
    Zhang, Yang
    Yu, Xiao-Wei
    Wei, Si-Ye
    Huang, Jian-Hong
    Wu, Ren-Ren
    Zhongguo Huanjing Kexue/China Environmental Science, 2021, 41 (07): : 3333 - 3342
  • [9] Microbial source tracking: State of the science
    Simpson, JM
    Santo Domingo, JW
    Reasoner, DJ
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (24) : 5279 - 5288
  • [10] Identification of source of faecal pollution of Tirumanimuttar River, Tamilnadu, India using microbial source tracking
    Kasi Murugan
    Perumal Prabhakaran
    Saleh Al-Sohaibani
    Kuppusamy Sekar
    Environmental Monitoring and Assessment, 2012, 184 : 6001 - 6012