Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning

被引:66
|
作者
Zhang, Xinyu [1 ]
Wang, Chengbo [1 ,2 ]
Liu, Yuanchang [3 ]
Chen, Xiang [4 ]
机构
[1] Dalian Maritime Univ, Minist Transportat, Key Lab Maritime Dynam Simulat & Control, Dalian 116026, Peoples R China
[2] Dalian Maritime Univ, Marine Engn Coll, Dalian 116026, Peoples R China
[3] UCL, Dept Mech Engn, Torrington Pl, London WC1E 7JE, England
[4] Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
关键词
decision-making; autonomous navigation; collision avoidance; scene division; deep reinforcement learning; maritime autonomous surface ships;
D O I
10.3390/s19184055
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This research focuses on the adaptive navigation of maritime autonomous surface ships (MASSs) in an uncertain environment. To achieve intelligent obstacle avoidance of MASSs in a port, an autonomous navigation decision-making model based on hierarchical deep reinforcement learning is proposed. The model is mainly composed of two layers: the scene division layer and an autonomous navigation decision-making layer. The scene division layer mainly quantifies the sub-scenarios according to the International Regulations for Preventing Collisions at Sea (COLREG). This research divides the navigational situation of a ship into entities and attributes based on the ontology model and Protege language. In the decision-making layer, we designed a deep Q-learning algorithm utilizing the environmental model, ship motion space, reward function, and search strategy to learn the environmental state in a quantized sub-scenario to train the navigation strategy. Finally, two sets of verification experiments of the deep reinforcement learning (DRL) and improved DRL algorithms were designed with Rizhao port as a study case. Moreover, the experimental data were analyzed in terms of the convergence trend, iterative path, and collision avoidance effect. The results indicate that the improved DRL algorithm could effectively improve the navigation safety and collision avoidance.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning
    Gao Z.
    Yan X.
    Gao F.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (07): : 969 - 975
  • [42] Random Prior Network for Autonomous Driving Decision-Making Based on Reinforcement Learning
    Qiang, Yuchuan
    Wang, Xiaolan
    Wang, Yansong
    Zhang, Weiwei
    Xu, Jianxun
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2024, 150 (04)
  • [43] Research on decision-making of autonomous vehicle following based on reinforcement learning method
    Gao, Hongbo
    Shi, Guanya
    Wang, Kelong
    Xie, Guotao
    Liu, Yuchao
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2019, 46 (03): : 444 - 452
  • [44] Deep reinforcement learning navigation via decision transformer in autonomous driving
    Ge, Lun
    Zhou, Xiaoguang
    Li, Yongqiang
    Wang, Yongcong
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [45] Robust decision-making for autonomous vehicles via deep reinforcement learning and expert guidanceRobust decision-making for autonomous vehicles via deep reinforcement...F.-J. Li et al.
    Feng-Jie Li
    Chun-Yang Zhang
    C. L. Philip Chen
    Applied Intelligence, 2025, 55 (6)
  • [46] Deep reinforcement learning based collision avoidance system for autonomous ships
    Wang, Yong
    Xu, Haixiang
    Feng, Hui
    He, Jianhua
    Yang, Haojie
    Li, Fen
    Yang, Zhen
    OCEAN ENGINEERING, 2024, 292
  • [47] Autonomous Vehicles' Decision-Making Behavior in Complex Driving Environments Using Deep Reinforcement Learning
    Qi, Xiao
    Ye, Yingjun
    Sun, Jian
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 5853 - 5864
  • [48] Decision-Making of an Autonomous Vehicle when Approached by an Emergency Vehicle using Deep Reinforcement Learning
    Shoaraee, Hamid
    Chen, Liang
    Jiang, Fan
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 185 - 191
  • [49] Driver-like decision-making method for vehicle longitudinal autonomous driving based on deep reinforcement learning
    Gao, Zhenhai
    Yan, Xiangtong
    Gao, Fei
    He, Lei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2022, 236 (13) : 3060 - 3070
  • [50] Leveraging on Deep Reinforcement Learning for Autonomous Safe Decision-Making in Highway On-ramp Merging
    Kherroubi, Zine el Abidine
    Aknine, Samir
    Bacha, Rebiha
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15815 - 15816