A Shrinkage-Thresholding Metropolis Adjusted Langevin Algorithm for Bayesian Variable Selection

被引:12
|
作者
Schreck, Amandine [1 ,2 ]
Fort, Gersende [1 ]
Le Corff, Sylvain [3 ]
Moulines, Eric [1 ]
机构
[1] Univ Paris Saclay, LTCI, CNRS, Telecom ParisTech, F-75013 Paris, France
[2] Lycee Maximilien Sorre, F-94230 Cachan, France
[3] Univ Paris Saclay, Univ Paris Sud, Lab Mathemat Orsay, CNRS, F-91405 Orsay, France
关键词
Bayesian variable selection; Metropolis Adjusted Langevin Algorithm (MALA); Markov chain Monte Carlo (MCMC); proximal operators; sparsity; MONTE-CARLO; REGRESSION; MODEL;
D O I
10.1109/JSTSP.2015.2496546
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a new Markov Chain Monte Carlo method for Bayesian variable selection in high dimensional settings. The algorithm is a Hastings-Metropolis sampler with a proposal mechanism which combines a Metropolis Adjusted Langevin (MALA) step to propose local moves associated with a shrinkage-thresholding step allowing to propose new models. The geometric ergodicity of this new trans-dimensional Markov Chain Monte Carlo sampler is established. An extensive numerical experiment, on simulated and real data, is presented to illustrate the performance of the proposed algorithm in comparison with some more classical trans-dimensional algorithms.
引用
收藏
页码:366 / 375
页数:10
相关论文
共 50 条
  • [1] Over-relaxation of the fast iterative shrinkage-thresholding algorithm with variable stepsize
    Yamagishi, Masao
    Yamada, Isao
    [J]. INVERSE PROBLEMS, 2011, 27 (10)
  • [2] Langevin diffusions and the Metropolis-adjusted Langevin algorithm
    Xifara, T.
    Sherlock, C.
    Livingstone, S.
    Byrne, S.
    Girolami, M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 91 : 14 - 19
  • [3] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [4] Nonconvex sampling with the Metropolis-adjusted Langevin algorithm
    Mangoubi, Oren
    Vishnoi, Nisheeth K.
    [J]. CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [5] A neural network assisted Metropolis adjusted Langevin algorithm
    Mueller, Christian
    Diedam, Holger
    Mrziglod, Thomas
    Schuppert, Andreas
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (02): : 93 - 111
  • [6] Fast compressive beamforming with a modified fast iterative shrinkage-thresholding algorithm
    Wang, Shuo
    Chi, Cheng
    Jin, Shenglong
    Wang, Peng
    Liu, Jiyuan
    Huang, Haining
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (05): : 3437 - 3448
  • [7] IMPROVING "FAST ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM": FASTER, SMARTER, AND GREEDIER
    Liang, Jingwei
    Luo, Tao
    Schonlieb, Carola-Bibiane
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1069 - A1091
  • [8] Multichannel predictive deconvolution based on the fast iterative shrinkage-thresholding algorithm
    Li, Zhong-Xiao
    Li, Zhen-Chun
    Lu, Wen-Kai
    [J]. GEOPHYSICS, 2016, 81 (01) : V17 - V30
  • [9] Synthesis of Planar Arrays Based on Fast Iterative Shrinkage-Thresholding Algorithm
    Gong, Yu
    Xiao, Shaoqiu
    Wang, Bingzhong
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (09) : 6046 - 6051
  • [10] An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift
    Yves F. Atchadé
    [J]. Methodology and Computing in Applied Probability, 2006, 8 : 235 - 254