Triple-doped white organic light-emitting devices grown in vacuum

被引:0
|
作者
Holmes, R [1 ]
Forrest, S [1 ]
Li, J [1 ]
Thompson, M [1 ]
机构
[1] Universal Display Corp, Ewing, NJ 08609 USA
来源
FOURTH INTERNATIONAL CONFERENCE ON SOLID STATE LIGHTING | 2004年 / 5530卷
关键词
D O I
10.1117/12.582840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate efficient (eta(p)=11+/-1 lm/W at 1000 cd/m(2)), bright electrophosphorescent white organic light emitting devices (WOLEDs) employing three dopants in a 9-nm-thick inert host matrix. The emissive layer consists of 2 wt.% iridium (M) bis(2-phenyl quinolyl-N, C-2) acetylacetonate (PQIr). 0.5 wt.% fac-tris(2-phenylpyridine) iridium (Ir(ppy)(3)) and 20 wt.% bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) co-doped into a wide energy gap p-bis(triphenylsilyly)benzene (UGH2) host. Devices were characterized in terms relevant to both display and general lighting applications, and have a peak total power efficiency of 42+/-4 Im/W at low intensities. falling to 10+/-1 lm/W at a drive current of 20 mA/cm(2) (corresponding to 1.4 lm/cm(2) for an isotropic illumination source). The Commission Internationale de l'Eclairage coordinates shift from (0.433,45) at 0.1 mA/cm(2) to (0.38.0.45) at 10 mA/cm(-2), and a color rendering index >75 is obtained. Three factors contribute to the high efficiency: thin layers leading to low voltage operation, a high quantum efficiency blue dopant, and efficient confinement of charge and excitons within the emissive region. The highest occupied and lowest unoccupied energy levels of component layers will he discussed to elucidate charge and exciton confinement within the emissive layer. Additionally. we will explain enengy transfer between dopants based on photoluminescent transient analysis of triple-doped thin films.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [31] White organic light-emitting devices with Sm: Ag black cathode
    Xie, W. F.
    Zhang, L. T.
    Liu, S. Y.
    OPTICS EXPRESS, 2006, 14 (22): : 10819 - 10824
  • [32] White organic light-emitting devices with a phosphorescent multiple emissive layer
    Cheng, Gang
    Zhang, Yingfang
    Zhao, Yi
    Lin, Yuanyuan
    Ruan, Chunyan
    Liu, Shiyong
    Fei, Teng
    Ma, Yuguang
    Cheng, Yanxiang
    APPLIED PHYSICS LETTERS, 2006, 89 (04)
  • [33] White organic light-emitting devices for solid-state lighting
    D'Andrade, BW
    Forrest, SR
    ADVANCED MATERIALS, 2004, 16 (18) : 1585 - 1595
  • [34] Preparation of organic white light-emitting devices via exciplex emission
    Xie Wei-Jie
    Li Yu-Peng
    Sun Cheng-Lin
    Li Feng
    Fei Teng
    Ma Yu-Guang
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2007, 28 (07): : 1342 - 1344
  • [35] Semitransparent white organic light-emitting devices with symmetrical electrode structure
    Ji, Wenyu
    Zhang, Letian
    Xu, Kai
    Xie, Wenfa
    Zhang, Hanzhuang
    Liu, Guoqiang
    Yao, Jinbo
    ORGANIC ELECTRONICS, 2011, 12 (12) : 2192 - 2197
  • [36] Efficiency enhancement and voltage reduction in white organic light-emitting devices
    Lai, S. L.
    Chan, M. Y.
    Fung, M. K.
    Lee, C. S.
    Lee, S. T.
    APPLIED PHYSICS LETTERS, 2007, 90 (20)
  • [37] Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs)
    Kamtekar, Kiran T.
    Monkman, Andrew P.
    Bryce, Martin R.
    ADVANCED MATERIALS, 2010, 22 (05) : 572 - 582
  • [38] High-efficiency nondoped white organic light-emitting devices
    Tong, Qing-Xiao
    Lai, Shiu-Lun
    Chan, Mei-Yee
    Tang, Jian-Xin
    Kwong, Hoi-Lun
    Lee, Chun-Sing
    Lee, Shuit-Tong
    APPLIED PHYSICS LETTERS, 2007, 91 (02)
  • [39] White organic light-emitting devices with high color purity and stability
    Bai, Yajie
    Liu, Su
    Li, Hairong
    Liu, Chunjuan
    Wang, Jinshun
    Chang, Jinxian
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (04)
  • [40] Thickness dependent emission color of organic white light-emitting devices
    Feng, J
    Liu, Y
    Li, F
    Wang, Y
    Liu, SY
    SYNTHETIC METALS, 2003, 137 (1-3) : 1101 - 1102