An adjoint method for gradient-based optimization of stellarator coil shapes

被引:32
|
作者
Paul, E. J. [1 ]
Landreman, M. [2 ]
Bader, A. [3 ]
Dorland, W. [1 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[3] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
关键词
stellarator coils; optimization; adjoint methods; TARGET-FIELD METHOD; COMPACT STELLARATOR; MAGNETIC-SURFACES; DESIGN; FORMULATION; PHYSICS; SHIM; NCSX;
D O I
10.1088/1741-4326/aac1c7
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a method for stellarator coil design via gradient-based optimization of the coil-winding surface. The REGCOIL (Landreman 2017 Nucl. Fusion 57 046003) approach is used to obtain the coil shapes on the winding surface using a continuous current potential. We apply the adjoint method to calculate derivatives of the objective function, allowing for efficient computation of analytic gradients while eliminating the numerical noise of approximate derivatives. We are able to improve engineering properties of the coils by targeting the rootmean-squared current density in the objective function. We obtain winding surfaces for W7-X and HSX which simultaneously decrease the normal magnetic field on the plasma surface and increase the surface-averaged distance between the coils and the plasma in comparison with the actual winding surfaces. The coils computed on the optimized surfaces feature a smaller toroidal extent and curvature and increased inter-coil spacing. A technique for computation of the local sensitivity of figures of merit to normal displacements of the winding surface is presented, with potential applications for understanding engineering tolerances.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A Gradient-based Optimization Method for Natural Laminar Flow Design
    Hanifi, A.
    Amoignon, O.
    Pralits, J. O.
    Chevalier, M.
    SEVENTH IUTAM SYMPOSIUM ON LAMINAR-TURBULENT TRANSITION, 2010, 18 : 3 - 10
  • [22] MAMGD: Gradient-Based Optimization Method Using Exponential Decay
    Sakovich, Nikita
    Aksenov, Dmitry
    Pleshakova, Ekaterina
    Gataullin, Sergey
    TECHNOLOGIES, 2024, 12 (09)
  • [23] On using a gradient-based method for heliostat field layout optimization
    Lutchman, S. L.
    Groenwold, A. A.
    Gauche, P.
    Bode, S.
    PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 : 1429 - 1438
  • [24] Fugitive emission source characterization using a gradient-based optimization scheme and scalar transport adjoint
    Brereton, Carol A.
    Joynes, Ian M.
    Campbell, Lucy J.
    Johnson, Matthew R.
    ATMOSPHERIC ENVIRONMENT, 2018, 181 : 106 - 116
  • [25] Coil optimization methods for a planar coil stellarator
    Kruger, T. G.
    Martin, M. F.
    Gates, D. A.
    Thea Energy Team
    NUCLEAR FUSION, 2025, 65 (02)
  • [26] A skeletonization algorithm for gradient-based optimization
    Menten, Martin J.
    Paetzold, Johannes C.
    Zimmer, Veronika A.
    Shit, Suprosanna
    Ezhov, Ivan
    Holland, Robbie
    Probst, Monika
    Schnabel, Julia A.
    Rueckert, Daniel
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21337 - 21346
  • [27] Gradient-based optimization of spintronic devices
    Imai, Y.
    Liu, S.
    Akashi, N.
    Nakajima, K.
    APPLIED PHYSICS LETTERS, 2025, 126 (08)
  • [28] A gradient-based direct aperture optimization
    Yang, Jie
    Zhang, Pengcheng
    Zhang, Liyuan
    Gui, Zhiguo
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2018, 35 (03): : 358 - 367
  • [29] Trivializations for Gradient-Based Optimization on Manifolds
    Lezcano-Casado, Mario
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [30] Catalyst for Gradient-based Nonconvex Optimization
    Paquette, Courtney
    Lin, Hongzhou
    Drusvyatskiy, Dmitriy
    Mairal, Julien
    Harchaoui, Zaid
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84