The periodic principal eigenvalues with applications to the nonlocal dispersal logistic equation

被引:24
|
作者
Sun, Jian-Wen [1 ]
Li, Wan-Tong [1 ]
Wang, Zhi-Cheng [1 ]
机构
[1] Lanzhou Univ, Key Lab Appl Math & Complex Syst, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
Positive periodic solution; Stability; Principal eigenvalue; Degeneracy; DIFFUSION-EQUATIONS; SPREADING SPEEDS; TRAVELING-WAVES; MONOSTABLE NONLINEARITY; BOUNDARY-CONDITIONS; OPERATORS; EVOLUTION; DIRICHLET; EXISTENCE; HABITATS;
D O I
10.1016/j.jde.2017.03.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the nonlocal dispersal equation {u(t) = integral(RN) J(x-y)u(y, t)dy-u+lambda u-a(x, t)u(P) in (Omega) over bar x (0, +infinity), u(x, t) = 0 in (R-N\(Omega) over bar) x (0, +infinity), u(x, 0) = u(0)(x) in (Omega) over bar, where Omega subset of R-N is a bounded domain, lambda and p > 1 are constants. The dispersal kernel J is nonnegative. The function a is an element of C((Omega) over bar x R) is nonnegative and T-periodic in t, but a(x, t) has temporal or spatial degeneracies (a(x, t) vanishes). We first study the periodic nonlocal eigenvalue problems with parameter and establish the asymptotic behavior of principal eigenvalues when the parameter is large. We find that the spatial degeneracy of a(x, t) always guarantees a principal eigenfunction. Then we consider the dynamical behavior of the equation if a(x, t) has temporal or spatial degeneracies. Our results indicate that only the temporal degeneracy can not cause a change of the dynamical behavior, but the spatial degeneracy always causes fundamental changes, whether or not the temporal degeneracy appears. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:934 / 971
页数:38
相关论文
共 50 条
  • [41] Unbounded principal eigenfunctions and the logistic equation on RN
    Dong, W
    Du, YH
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 67 (03) : 413 - 427
  • [42] DYNAMICS OF POSITIVE STEADY-STATE SOLUTIONS OF A NONLOCAL DISPERSAL LOGISTIC MODEL WITH NONLOCAL TERMS
    Ma, Li
    Luo, Youquan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (07): : 2555 - 2582
  • [43] PERIODIC TRAVELING WAVES IN A TIME PERIODIC SEIR MODEL WITH NONLOCAL DISPERSAL AND DELAY
    Yang, Lu
    Li, Yongkun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (09): : 5087 - 5104
  • [44] Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence
    Hutson, V.
    Shen, W.
    Vickers, G. T.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (04) : 1147 - 1175
  • [45] FINITE MASS SOLUTIONS FOR A NONLOCAL INHOMOGENEOUS DISPERSAL EQUATION
    Cortazar, Carmen
    Elgueta, Manuel
    Garcia-Melian, Jorge
    Martinez, Salome
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (04) : 1409 - 1419
  • [46] The Dynamics of a Nonlocal Dispersal Logistic Model with Seasonal Succession and Free Boundaries
    Li, Zhenzhen
    Dai, Binxiang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (03) : 2193 - 2238
  • [47] Positive solutions for nonlocal dispersal equation with spatial degeneracy
    Sun, Jian-Wen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (01):
  • [48] Positive solutions for nonlocal dispersal equation with spatial degeneracy
    Jian-Wen Sun
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [49] Asymmetric dispersal in the multi-patch logistic equation
    Arditi, Roger
    Lobry, Claude
    Sari, Tewfik
    THEORETICAL POPULATION BIOLOGY, 2018, 120 : 11 - 15
  • [50] Study of a generalized logistic equation with nonlocal reaction term
    Jianhua Zhou
    Ge Gao
    Baoqiang Yan
    Boundary Value Problems, 2018