Microstructural Effects on the Creep Deformation of Alumina/Single-Wall Carbon Nanotubes Composites

被引:19
|
作者
Zapata-Solvas, Eugenio [2 ]
Gomez-Garcia, Diego [2 ]
Poyato, Rosalia [2 ]
Lee, Zonghoon [3 ]
Castillo-Rodriguez, Miguel [4 ]
Dominguez-Rodriguez, Arturo [2 ]
Radmilovic, Velimir [3 ]
Padture, Nitin P. [1 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[2] Univ Seville, CSIC, ICMSE, Seville, Spain
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[4] Max Planck Inst Met Res, StEM, D-70569 Stuttgart, Germany
关键词
FINE-GRAINED ALUMINA; COMPRESSIVE CREEP; CERAMICS; TEMPERATURE; BOUNDARIES; AL2O3;
D O I
10.1111/j.1551-2916.2010.03681.x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The enhanced high-temperature creep resistance in alumina/single-wall carbon nanotubes (SWNTs) composites has been attributed to the unprecedented grain-boundary structure of these composites, where the SWNTs bundles segregated at the alumina grain boundaries partially impede grain-boundary sliding. In this study, the effect of SWNTs distributions at alumina grain boundaries on the creep behavior of alumina/ SWNTs composites has been investigated. Microstructures of two different alumina/10 vol% SWNTs composites, one with heterogeneous and the other with homogenous distributions of SWNTs at grain boundaries, have been characterized quantitatively. The steady-state creep rate (uniaxial compression) in the heterogeneous composite has been found to be over three times higher than that in the homogeneous composite at 1300 degrees and 1350 degrees C (argon atmosphere). It is argued that the less uniform distribution of SWNTs at the alumina grain boundaries in the heterogeneous composite results in less effective obstruction of grain-boundary sliding, and attendant higher creep rate. This also results in more efficient recovery in that composite.
引用
收藏
页码:2042 / 2047
页数:6
相关论文
共 50 条
  • [21] Excitons in single-wall carbon nanotubes
    Bulashevich, K. A.
    Suris, R. A.
    Rotkin, S. V.
    International Journal of Nanoscience, Vol 2, No 6, 2003, 2 (06): : 521 - 526
  • [22] Purification of single-wall carbon nanotubes
    Shi, ZJ
    Lian, YF
    Liao, FH
    Zhou, XH
    Gu, ZN
    Zhang, YG
    Iijima, S
    SOLID STATE COMMUNICATIONS, 1999, 112 (01) : 35 - 37
  • [23] Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics
    Poyato, R
    Vasiliev, AL
    Padture, NP
    Tanaka, H
    Nishimura, T
    NANOTECHNOLOGY, 2006, 17 (06) : 1770 - 1777
  • [24] Fluorination of single-wall carbon nanotubes
    Mickelson, ET
    Huffman, CB
    Rinzler, AG
    Smalley, RE
    Hauge, RH
    Margrave, JL
    CHEMICAL PHYSICS LETTERS, 1998, 296 (1-2) : 188 - 194
  • [25] Aligned single-wall carbon nanotubes in composites by melt processing methods
    Haggenmueller, R
    Gommans, HH
    Rinzler, AG
    Fischer, JE
    Winey, KI
    CHEMICAL PHYSICS LETTERS, 2000, 330 (3-4) : 219 - 225
  • [26] Ultralong single-wall carbon nanotubes
    L. X. Zheng
    M. J. O'Connell
    S. K. Doorn
    X. Z. Liao
    Y. H. Zhao
    E. A. Akhadov
    M. A. Hoffbauer
    B. J. Roop
    Q. X. Jia
    R. C. Dye
    D. E. Peterson
    S. M. Huang
    J. Liu
    Y. T. Zhu
    Nature Materials, 2004, 3 : 673 - 676
  • [27] Filling single-wall carbon nanotubes
    Monthioux, M
    CARBON, 2002, 40 (10) : 1809 - 1823
  • [28] Properties of single-wall carbon nanotubes
    Yu, HY
    Jhang, SH
    Park, YW
    Bittar, A
    Trodahl, HJ
    Kaiser, AB
    SYNTHETIC METALS, 2001, 121 (1-3) : 1223 - 1224
  • [29] Electroconductance in single-wall carbon nanotubes
    Jaiswal, Manu
    Sangeeth, C. S. Suchand
    Menon, Reghu
    APPLIED PHYSICS LETTERS, 2009, 95 (03)
  • [30] Exciton effects of optical transitions in single-wall carbon nanotubes
    Ichida, M
    Mizuno, S
    Tani, K
    Saito, Y
    Nakamura, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (10) : 3131 - 3133