mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions

被引:45
|
作者
Rodrigues, Carlos H. M. [1 ,2 ,3 ]
Pires, Douglas E., V [1 ,2 ,3 ,4 ]
Ascher, David B. [1 ,2 ,3 ,5 ]
机构
[1] Baker Heart & Diabet Inst, Computat Biol & Clin Informat, Melbourne, Vic, Australia
[2] Univ Melbourne, Dept Biochem & Pharmacol, Struct Biol & Bioinformat, Melbourne, Vic, Australia
[3] Univ Melbourne, Bio21 Inst, Syst & Computat Biol, Melbourne, Vic, Australia
[4] Univ Melbourne, Sch Comp & Informat Syst, Melbourne, Vic, Australia
[5] Univ Cambridge, Dept Biochem, Cambridge, England
基金
英国医学研究理事会;
关键词
WEB SERVER; AFFINITY CHANGES; DATABASE; GENE; STABILITY;
D O I
10.1093/nar/gkab273
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-protein interactions play a crucial role in all cellular functions and biological processes and mutations leading to their disruption are enriched in many diseases. While a number of computational methods to assess the effects of variants on protein-protein binding affinity have been proposed, they are in general limited to the analysis of single point mutations and have been shown to perform poorly on independent test sets. Here, we present mmCSM-PPI, a scalable and effective machine learning model for accurately assessing changes in protein-protein binding affinity caused by single and multiple missense mutations. We expanded our well-established graph-based signatures in order to capture physicochemical and geometrical properties of multiple wild-type residue environments and integrated them with substitution scores and dynamics terms from normal mode analysis. mmCSM-PPI was able to achieve a Pearson's correlation of up to 0.75 (RMSE = 1.64 kcal/mol) under 10-fold cross-validation and 0.70 (RMSE = 2.06 kcal/mol) on a non-redundant blind test, outperforming existing methods. Our method is freely available as a user-friendly and easy-to-use web server and API at http://biosig.unimelb.edu.au/mmcsm_ppi.
引用
收藏
页码:W417 / W424
页数:8
相关论文
共 50 条
  • [21] Kernel methods for predicting protein-protein interactions
    Ben-Hur, A
    Noble, WS
    BIOINFORMATICS, 2005, 21 : I38 - I46
  • [22] Information assessment on predicting protein-protein interactions
    Nan Lin
    Baolin Wu
    Ronald Jansen
    Mark Gerstein
    Hongyu Zhao
    BMC Bioinformatics, 5
  • [23] The interactome: Predicting the protein-protein interactions in cells
    Dariusz Plewczyński
    Krzysztof Ginalski
    Cellular & Molecular Biology Letters, 2009, 14 : 1 - 22
  • [24] Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions
    Moretti, Rocco
    Fleishman, Sarel J.
    Agius, Rudi
    Torchala, Mieczyslaw
    Bates, Paul A.
    Kastritis, Panagiotis L.
    Rodrigues, Joao P. G. L. M.
    Trellet, Mikael
    Bonvin, Alexandre M. J. J.
    Cui, Meng
    Rooman, Marianne
    Gillis, Dimitri
    Dehouck, Yves
    Moal, Iain
    Romero-Durana, Miguel
    Perez-Cano, Laura
    Pallara, Chiara
    Jimenez, Brian
    Fernandez-Recio, Juan
    Flores, Samuel
    Pacella, Michael
    Kilambi, Krishna Praneeth
    Gray, Jeffrey J.
    Popov, Petr
    Grudinin, Sergei
    Esquivel-Rodriguez, Juan
    Kihara, Daisuke
    Zhao, Nan
    Korkin, Dmitry
    Zhu, Xiaolei
    Demerdash, Omar N. A.
    Mitchell, Julie C.
    Kanamori, Eiji
    Tsuchiya, Yuko
    Nakamura, Haruki
    Lee, Hasup
    Park, Hahnbeom
    Seok, Chaok
    Sarmiento, Jamica
    Liang, Shide
    Teraguchi, Shusuke
    Standley, Daron M.
    Shimoyama, Hiromitsu
    Terashi, Genki
    Takeda-Shitaka, Mayuko
    Iwadate, Mitsuo
    Umeyama, Hideaki
    Beglov, Dmitri
    Hall, David R.
    Kozakov, Dima
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2013, 81 (11) : 1980 - 1987
  • [25] The interactome: Predicting the protein-protein interactions in cells
    Plewczynski, Dariusz
    Ginalski, Krzysztof
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2009, 14 (01) : 1 - 22
  • [26] Predicting the essentialities of protein-protein interactions in cancer
    Cooper, Lee A. D.
    Moran, Josue D.
    Li, Zenggang
    Du, Yuhong
    Harati, Sahar
    Ivanov, Andrey A.
    Webber, Phillip
    Havel, Jonathan J.
    Johns, Margaret A.
    Fu, Haian
    Moreno, Carlos S.
    CANCER RESEARCH, 2015, 75 (22)
  • [27] Predicting protein-protein interactions by association mining
    Kotlyar, M
    Jurisica, I
    INFORMATION SYSTEMS FRONTIERS, 2006, 8 (01) : 37 - 46
  • [28] Predicting Protein-Protein Interactions by Association Mining
    Information Systems Frontiers, 2006, 8 : 37 - 47
  • [29] Information assessment on predicting protein-protein interactions
    Lin, N
    Wu, BL
    Jansen, R
    Gerstein, M
    Zhao, HY
    BMC BIOINFORMATICS, 2004, 5 (1)
  • [30] ProteinPrompt: a webserver for predicting protein-protein interactions
    Canzler, Sebastian
    Fischer, Markus
    Ulbricht, David
    Ristic, Nikola
    Hildebrand, Peter W.
    Staritzbichler, Rene
    BIOINFORMATICS ADVANCES, 2022, 2 (01):