Removal of aliphatic amino acids by hybrid organic-inorganic layered compounds

被引:26
|
作者
Silverio, Fabiano [1 ]
dos Reis, Marcio Jose [1 ]
Tronto, Jairo [1 ]
Valim, Joao Barros [1 ]
机构
[1] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14040901 Ribeirao Preto, Brazil
基金
巴西圣保罗研究基金会;
关键词
hydrotalcite; layered double hydroxides; aspartic acid; glutamic acid; adsorption;
D O I
10.1016/j.apsusc.2006.12.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amino acids have been extensively used in several processes of the pharmaceutical and food industries. Treatments for the recovery and reuse of the wastewaters generated from these processes are few and little known. This work aims at studying the influence of variables like temperature, pH and ionic strength on the adsorption of the amino acids Asp and Glu, contained in aqueous solutions, on layered double hydroxides of the Mg-Al-CO3-LDH system. The adsorption experiments were performed at two different temperatures (298 and 310 K), two different pH values (7.0 and 10.0), and two ionic strength conditions (with or without the addition of NaCl). The adsorption isotherms exhibited similar profiles under the various conditions studied: an increase in temperature as well as an increase in the pH value decreased the amount of adsorbed amino acid while an increase in the ionic strength increased Asp and Glu adsorption. The PXRD analysis showed that the diffractograms obtained before and after the adsorption of amino acids have a similar pattern. The FT-IR spectra of the adsorbed material presented specific bands, which are related to the amino acids. The concentration range varied up to the anion solubility product and the extraction rate lay between 2.7 and 23.4% at higher equilibrium concentrations, showing that Mg-Al-CO3-LDH is efficient at removing the amino acids from the aqueous medium. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:5756 / 5761
页数:6
相关论文
共 50 条
  • [21] Switchable Rashba anisotropy in layered hybrid organic-inorganic perovskite by hybrid improper ferroelectricity
    Wang, Fei
    Gao, Heng
    de Graaf, Coen
    Poblet, Josep M.
    Campbell, Branton J.
    Stroppa, Alessandro
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [22] Organic-Inorganic Hybrid Materials
    Garcia-Martinez, Jesus-Maria
    Collar, Emilia P.
    POLYMERS, 2021, 13 (01) : 1 - 4
  • [23] Hybrid organic-inorganic sensors
    Bescher, E
    Mackenzie, JD
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 1998, 6 (2-3): : 145 - 154
  • [24] Hybrid organic-inorganic membranes
    Cornelius, C
    Hibshman, C
    Marand, E
    SEPARATION AND PURIFICATION TECHNOLOGY, 2001, 25 (1-3) : 181 - 193
  • [25] Hybrid organic-inorganic photorefractives
    Cook, G
    Wyres, CA
    Deer, MJ
    Jones, DC
    LIQUID CRYSTALS VII, 2003, 5213 : 63 - 77
  • [26] Organic-inorganic hybrid materials
    Calvert, PD
    Mark, JE
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 1998, 6 (2-3): : 73 - 73
  • [27] Organic-Inorganic Hybrid Nanomaterials
    Kalia, Susheel
    Haldorai, Yuvaraj
    Advances in Polymer Science, 2014, 267
  • [28] Hybrid Organic-Inorganic Photovoltaics
    Ahmad, Shahzada
    Nazeeruddin, Mohammad Khaja
    Bisquert, Juan
    CHEMPHYSCHEM, 2014, 15 (06) : 987 - 989
  • [29] Hybrid Organic-Inorganic Antiperovskites
    Shi, Chao
    Yu, Hui
    Wang, Qin-Wen
    Ye, Le
    Gong, Zhi-Xin
    Ma, Jia-Jun
    Jiang, Jia-Ying
    Hua, Miao-Miao
    Shuai, Cijun
    Zhang, Yi
    Ye, Heng-Yun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 167 - 171
  • [30] Hybrid organic-inorganic composites
    1600, ACS, Washington, DC, USA (117):