Discovery of transcription start sites in the Chinese hamster genome by next-generation RNA sequencing

被引:7
|
作者
Jakobi, Tobias [1 ]
Brinkrolf, Karina [2 ]
Tauch, Andreas [2 ]
Noll, Thomas [3 ]
Stoye, Jens [1 ,4 ]
Puehler, Alfred [2 ]
Goesmann, Alexander [5 ]
机构
[1] Univ Bielefeld, Inst Bioinformat, Ctr Biotechnol CeBiTec, D-33594 Bielefeld, Germany
[2] Univ Bielefeld, Inst Genomforsch & Syst Biol, Ctr Biotechnol CeBiTec, D-33594 Bielefeld, Germany
[3] Univ Bielefeld, Ctr Biotechnol CeBiTec, D-33594 Bielefeld, Germany
[4] Univ Bielefeld, Tech Fak, D-33594 Bielefeld, Germany
[5] Univ Giessen, D-35392 Giessen, Germany
关键词
Chinese hamster ovary cells; RNA sequencing; Transcription start site identification; Promoter analysis; Bioinformatics pipeline; CORE PROMOTER ELEMENT; WIDE ANALYSIS; CAP ANALYSIS; DNA-BINDING; TATA-BOX; IDENTIFICATION; DOWNSTREAM; CHO; EXPRESSION; ALIGNMENT;
D O I
10.1016/j.jbiotec.2014.07.437
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Chinese hamster ovary (CHO) cell lines are one of the major production tools for monoclonal antibodies, recombinant proteins, and therapeutics. Although many efforts have significantly improved the availability of sequence information for CHO cells in the last years, forthcoming draft genomes still lack the information depth known from the mouse or human genomes. Many genes annotated for CHO cells and the Chinese hamster reference genome still are in silico predictions, only insufficiently verified by biological experiments. The correct annotation of transcription start sites (TSSs) is of special interest for CHO cells, as these directly define the location of the eukaryotic core promoter. Our study aims to elucidate these largely unexplored regions, trying to shed light on promoter landscapes in the Chinese hamster genome. Based on a 5' enriched dual library RNA sequencing approach 6547 TSSs were identified, of which over 90% were assigned to known genes. These TSSs were used to perform extensive promoter studies using a novel, modular bioinformatics pipeline, incorporating analyses of important regulatory elements of the eukaryotic core promoter on per-gene level and on genomic scale. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 75
页数:12
相关论文
共 50 条
  • [1] Motif discovery and transcription factor binding sites before and after the next-generation sequencing era
    Zambelli, Federico
    Pesole, Graziano
    Pavesi, Giulio
    BRIEFINGS IN BIOINFORMATICS, 2013, 14 (02) : 225 - 237
  • [2] APPLICATIONS OF NEXT-GENERATION SEQUENCING Genome structural variation discovery and genotyping
    Alkan, Can
    Coe, Bradley P.
    Eichler, Evan E.
    NATURE REVIEWS GENETICS, 2011, 12 (05) : 363 - 375
  • [3] Where does transcription start? 5'-RACE adapted to next-generation sequencing
    Leenen, Fleur A. D.
    Vernocchi, Sara
    Hunewald, Oliver E.
    Schmitz, Stephanie
    Molitor, Anne M.
    Muller, Claude P.
    Turner, Jonathan D.
    NUCLEIC ACIDS RESEARCH, 2016, 44 (06) : 2628 - 2645
  • [4] Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing
    Becker, Jennifer
    Hackl, Matthias
    Rupp, Oliver
    Jakobi, Tobias
    Schneider, Jessica
    Szczepanowski, Rafael
    Bekel, Thomas
    Borth, Nicole
    Goesmann, Alexander
    Grillari, Johannes
    Kaltschmidt, Christian
    Noll, Thomas
    Puehler, Alfred
    Tauch, Andreas
    Brinkrolf, Karina
    JOURNAL OF BIOTECHNOLOGY, 2011, 156 (03) : 227 - 235
  • [5] Structural variation discovery with next-generation sequencing
    Gao, Jingyang
    Qi, Fei
    Guan, Rui
    2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 709 - 711
  • [6] NEW VIRUS DISCOVERY WITH NEXT-GENERATION SEQUENCING
    Wang Chunlin
    IFPT'6: PROGRESS ON POST-GENOME TECHNOLOGIES, PROCEEDINGS, 2009, : 42 - 42
  • [7] Structural variation discovery with next-generation sequencing
    Pinosio, S.
    Marroni, F.
    Jorge, V.
    Faivre-Rampant, P.
    Felice, N.
    Di Centa, E.
    Bastien, C.
    Cattonaro, F.
    Morgante, M.
    FEBS JOURNAL, 2011, 278 : 82 - 82
  • [8] NEXT-GENERATION SEQUENCING AND GENOME EVOLUTION IN ALLOPOLYPLOIDS
    Buggs, Richard J. A.
    Renny-Byfield, Simon
    Chester, Michael
    Jordon-Thaden, Ingrid E.
    Viccini, Lyderson Facio
    Chamala, Srikar
    Leitch, Andrew R.
    Schnable, Patrick S.
    Barbazuk, W. Bradley
    Soltis, Pamela S.
    Soltis, Douglas E.
    AMERICAN JOURNAL OF BOTANY, 2012, 99 (02) : 372 - 382
  • [9] Next-generation sequencing and large genome assemblies
    Henson, Joseph
    Tischler, German
    Ning, Zemin
    PHARMACOGENOMICS, 2012, 13 (08) : 901 - 915
  • [10] Genes, behavior and next-generation RNA sequencing
    Hitzemann, R.
    Bottomly, D.
    Darakjian, P.
    Walter, N.
    Iancu, O.
    Searles, R.
    Wilmot, B.
    McWeeney, S.
    GENES BRAIN AND BEHAVIOR, 2013, 12 (01) : 1 - 12