Amphiphilic Block Copolymer Aided Design of Hybrid Assemblies of Nanoparticles: Nanowire, Nanoring, and Nanocluster

被引:33
|
作者
Ma, Shiying [1 ,2 ,3 ]
Hu, Yi [1 ,2 ]
Wang, Rong [1 ,2 ]
机构
[1] Nanjing Univ, Key Lab High Performance Polymer Mat & Technol, Minist Educ, Dept Polymer Sci & Engn,State Key Lab Coordinat C, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Chem Life Sci, Sch Chem & Chem Engn, Nanjing Natl Lab Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Taishan Univ, Coll Chem & Chem Engn, Tai An 271021, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
DISSIPATIVE PARTICLE DYNAMICS; GRAFTED NANOPARTICLES; SELECTIVE SOLVENTS; SHAPE AMPHIPHILES; POLYMER MELTS; QUANTUM DOTS; CHAIN LENGTH; VESICLES; SIMULATION; MICELLES;
D O I
10.1021/acs.macromol.5b02778
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We investigate the self-assembly and aggregation behaviors of nanoparticles in hybrid assemblies made from amphiphilic block copolymer tethered nanoparticles using the dissipative particle dynamics (DPD)) approach. By varying the arm number of the tethered amphiphilic block copolymers, hydrophobic block chain length, and interaction parameter between nanoparticle and hydrophobic block, different morphelogical hybrid aggregates are obtained, including branching rod-like micelles, ring-like disk-like micelles, and vesicles. Most importantly, the nanoparticles aggregate in the various micelles and form nanowires, nanorings, and nanoclusters. Only using amphiphilic block copolymer tethered nanoparticles, hybrid vesicles induding patchy vesicles-and heterogeneous vesicles are obtained. Moreover, nanodusters with distinct-number of nanoparticles in hybrid disk-like micelles and vesicles are fabricated through controlling the interaction parameter between nanoparticle and hydrophobic block.
引用
收藏
页码:3535 / 3541
页数:7
相关论文
共 50 条
  • [21] Synthesis of star thermoresponsive amphiphilic block copolymer nano-assemblies and the effect of topology on their thermoresponse
    Cao, Mengjiao
    Nie, Huijun
    Hou, Yuwen
    Han, Guang
    Zhang, Wangqing
    POLYMER CHEMISTRY, 2019, 10 (03) : 403 - 411
  • [22] Controlled Release of Paclitaxel from Amphiphilic Copolymer Hybrid Assembly Nanoparticles
    Wang, Na
    Deng, Liandong
    Guo, Shutao
    Yao, Chunmei
    Dong, Anjie
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (03) : 2030 - 2037
  • [23] Water Diffusion Dependence on Amphiphilic Block Design in (Amphiphilic-Hydrophobic) Diblock Copolymer Membranes
    Dorenbos, Gert
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (25): : 5634 - 5645
  • [24] Differences of internal structures between amphiphilic and hydrophobic block-copolymer nanoparticles
    Higuchi, Takeshi
    Yabu, Hiroshi
    Shimomura, Masatsugu
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (03) : 856 - 858
  • [25] Role of amphiphilic block copolymer P123 in the preparation of Zirconia nanoparticles
    Zhu, HT
    Yin, YS
    RARE METAL MATERIALS AND ENGINEERING, 2004, 33 (06) : 85 - 88
  • [26] Gold Nanoparticles Decorated by Amphiphilic Block Copolymer as Efficient System for Drug Delivery
    Wang, Zhifei
    Jia, Lin
    Li, Min-Hui
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2013, 9 (01) : 61 - 68
  • [27] Rational design of block copolymer self-assemblies in photodynamic therapy
    Demazeau, Maxime
    Gibot, Laure
    Mingotaud, Anne-Francoise
    Vicendo, Patricia
    Roux, Clement
    Lonetti, Barbara
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 (180-212) : 180 - 212
  • [28] Spherical assemblies of semiconductor nanoparticles in water-soluble block copolymer aggregates
    Moffitt, M
    Vali, H
    Eisenberg, A
    CHEMISTRY OF MATERIALS, 1998, 10 (04) : 1021 - 1028
  • [30] From Nanodot to Nanowire: Hybrid Au/Titania Nanoarrays by Block Copolymer Templates
    Peng, Juan
    Mao, Chun
    Kim, Jinheung
    Kim, Dong Ha
    MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (21) : 1857 - 1861