Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species

被引:20
|
作者
Vongsangnak, Wanwipa [1 ,2 ,7 ]
Klanchui, Amornpan [3 ]
Tawornsamretkit, Iyarest [4 ]
Tatiyaborwornchai, Witthawin [5 ]
Laoteng, Kobkul [6 ]
Meechai, Asawin [4 ,5 ]
机构
[1] Kasetsart Univ, Fac Sci, Dept Zool, Bangkok 10900, Thailand
[2] Soochow Univ, Ctr Syst Biol, Suzhou 215006, Peoples R China
[3] King Mongkuts Univ Technol Thonburi, Fac Engn, Biol Engn Program, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[4] King Mongkuts Univ Technol Thonburi, Syst Biol Res Grp, Bangkok 10140, Thailand
[5] King Mongkuts Univ Technol Thonburi, Fac Engn, Dept Chem Engn, Bangkok 10140, Thailand
[6] Natl Sci & Technol Dev Agcy, Natl Ctr Genet Engn & Biotechnol, Bioproc Technol Lab, Khong Luang 12120, Pathum Thani, Thailand
[7] Kasetsart Univ, Fac Sci, Computat Biomodelling Lab Agr Sci & Technol, Bangkok 10900, Thailand
基金
中国国家自然科学基金;
关键词
Lipid; Mucor circinelloides; Genome-scale metabolic modeling; Oleaginous species; Metabolic engineering; LIPID-ACCUMULATION; ACID PRODUCTION; OIL PRODUCTION; PREDICTION; PHYSIOLOGY; RACEMOSUS;
D O I
10.1016/j.gene.2016.02.028
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We present a novel genome-scale metabolic model iWV1213 of Mucor circinelloides, which is an oleaginous fungus for industrial applications. The model contains 1213 genes, 1413 metabolites and 1326 metabolic reactions across different compartments. We demonstrate that iWV1213 is able to accurately predict the growth rates of M. circinelloides on various nutrient sources and culture conditions using Flux Balance Analysis and Phenotypic Phase Plane analysis. Comparative analysis of three oleaginous genome-scale models, including M. circinelloides (iWV1213), Mortierella alpina (iCY1106) and Yarrowia lipolytica (iYL619_PCP) revealed that iWV1213 possesses a higher number of genes involved in carbohydrate, amino acid, and lipid metabolisms that might contribute to its versatility in nutrient utilization. Moreover, the identification of unique and common active reactions among the Zygomycetes oleaginous models using Flux Variability Analysis unveiled a set of gene/enzyme candidates as metabolic engineering targets for cellular improvement. Thus, iWV1213 offers a powerful metabolic engineering tool for multi-level omics analysis, enabling strain optimization as a cell factory platform of lipid-based production. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 50 条
  • [21] Genome-scale metabolic modeling of liver metabolic reprogramming in alcoholic hepatitis
    Manchel, A.
    Mahadevan, R.
    Bataller, R.
    Hoek, J. B.
    Vadigepalli, R.
    ALCOHOL-CLINICAL AND EXPERIMENTAL RESEARCH, 2023, 47 : 498 - 498
  • [22] Genome-scale modeling helps to increase lipid accumulation in the oleaginous yeast Yarrowia lipolytica
    Kavscek, Martin
    Bhutada, Govindprasad
    Kohlwein, Sepp D.
    Natter, Klaus
    YEAST, 2015, 32 : S236 - S236
  • [23] OF FISH AND MEN: A COMPARATIVE STUDY FOR GENOME-SCALE METABOLIC NETWORKS
    Ding, Dewu
    THEORETICAL BIOLOGY FORUM, 2011, 104 (02) : 21 - 25
  • [24] Genome-scale metabolic networks
    Terzer, Marco
    Maynard, Nathaniel D.
    Covert, Markus W.
    Stelling, Joerg
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2009, 1 (03) : 285 - 297
  • [25] Machine and deep learning meet genome-scale metabolic modeling
    Zampieri, Guido
    Vijayakumar, Supreeta
    Yaneske, Elisabeth
    Angione, Claudio
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (07)
  • [26] Understanding Antimicrobial Resistance Using Genome-Scale Metabolic Modeling
    Alonso-Vasquez, Tania
    Fondi, Marco
    Perrin, Elena
    ANTIBIOTICS-BASEL, 2023, 12 (05):
  • [27] Genome-scale metabolic modeling of responses to polymyxins in Pseudomonas aeruginosa
    Zhu, Yan
    Czauderna, Tobias
    Zhao, Jinxin
    Klapperstueck, Matthias
    Maifiah, Mohd Hafidz Mahamad
    Han, Mei-Ling
    Lu, Jing
    Sommer, Bjoern
    Velkov, Tony
    Lithgow, Trevor
    Song, Jiangning
    Schreiber, Falk
    Li, Jian
    GIGASCIENCE, 2018, 7 (04):
  • [28] Emerging methods for genome-scale metabolic modeling of microbial communities
    Tarzi, Chaimaa
    Zampieri, Guido
    Sullivan, Neil
    Angione, Claudio
    TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2024, 35 (06): : 533 - 548
  • [29] Genome-scale modeling forBacillus coagulansto understand the metabolic characteristics
    Chen, Yu
    Sun, Yan
    Liu, Zhihao
    Dong, Fengqing
    Li, Yuanyuan
    Wang, Yonghong
    BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (11) : 3545 - 3558
  • [30] Bayesian Integrative Modeling of Genome-Scale Metabolic and Regulatory Networks
    Mhamdi, Hanen
    Bourdon, Jeremie
    Larhlimi, Abdelhalim
    Elloumi, Mourad
    INFORMATICS-BASEL, 2020, 7 (01):