Detection of trace water in phosphine with cavity ring-down spectroscopy

被引:20
|
作者
Lehman, SY
Bertness, KA
Hodges, JT
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
关键词
cavity ring-down spectroscopy; impurities; molecular beam epitaxy; phosphides; semiconducting aluminum compounds; semiconducting III-V materials;
D O I
10.1016/S0022-0248(02)02248-0
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Water is a detrimental impurity even at concentrations of 10 nmol/mol or less in source gases for compound semiconductor epitaxial growth. Oxygen complexes from water incorporation cause degraded luminescent efficiency and reduced minority-carrier lifetimes. Most techniques for detecting water in process gases have poor accuracy below 1 mumol/mol and require frequent calibration and control of ambient humidity. Cavity ring-down spectroscopy (CRDS), in contrast, makes use of a fundamental physical property of H2O molecules-the optical absorption line strength-and a time-constant measurement to provide a water concentration value with high precision and low uncertainty even in the nmol/mol range. We describe the CRDS technique and present the first CRDS measurements of trace H2O contamination in unpurified and purified phosphine. We also report secondary-ion mass spectrometry measurements of the O concentration profiles within a multi-layer film grown using molecular-beam epitaxy in which respective film layers were grown with the purified and unpurified phosphine previously characterized by CRDS. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:262 / 268
页数:7
相关论文
共 50 条
  • [41] Cavity Ring-Down Spectroscopy for ultra sensitive trace gas analysis.
    Yan, WB
    Markowski, ML
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U111 - U111
  • [42] Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3)
    S.S. Brown
    H. Stark
    A.R. Ravishankara
    [J]. Applied Physics B, 2002, 75 : 173 - 182
  • [43] On electronic type cavity ring-down spectroscopy
    Hirabayashi, Yuki
    Tanimoto, Hirokazu
    Maeda, Yoshinobu
    [J]. IEEJ Transactions on Sensors and Micromachines, 2014, 134 (08) : 243 - 246
  • [44] 410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2
    Mazurenka, MI
    Fawcett, BL
    Elks, JMF
    Shallcross, DE
    Orr-Ewing, AJ
    [J]. CHEMICAL PHYSICS LETTERS, 2003, 367 (1-2) : 1 - 9
  • [45] Cavity ring-down spectroscopy in the liquid phase
    Xu, SC
    Sha, GH
    Xie, JC
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (02): : 255 - 258
  • [46] Superposition principle and cavity ring-down spectroscopy
    Princeton Univ, Princeton, United States
    [J]. J Chem Phys, 23 (10263-10277):
  • [47] Towards Supercontinuum Cavity Ring-Down Spectroscopy
    K. Stelmaszczyk
    M. Fechner
    P. Rohwetter
    M. Queißer
    A. Czyżewski
    T. Stacewicz
    L. Wöste
    [J]. Applied Physics B, 2009, 94 : 369 - 373
  • [48] Cavity ring-down spectroscopy of the benzyl radical
    Tonokura, K
    Koshi, M
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (22): : 4457 - 4461
  • [49] The superposition principle and cavity ring-down spectroscopy
    Lehmann, KK
    Romanini, D
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (23): : 10263 - 10277
  • [50] Towards Supercontinuum Cavity Ring-Down Spectroscopy
    Stelmaszczyk, K.
    Fechner, M.
    Rohwetter, P.
    Queisser, M.
    Czyzewski, A.
    Stacewicz, T.
    Woeste, L.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 94 (03): : 369 - 373