Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation

被引:273
|
作者
Tan, Peng [1 ]
Jin, Yan [1 ]
Han, Ke [1 ]
Hou, Bing [1 ]
Chen, Mian [1 ]
Guo, Xiaofeng [1 ]
Gao, Jie [1 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Engn, Beijing 102249, Peoples R China
关键词
Shale; Hydraulic fracturing; Vertical propagation; Natural fracture; Bedding plane; STIMULATED RESERVOIR VOLUME; NETWORK PROPAGATION; NATURAL FRACTURE; CRITERION;
D O I
10.1016/j.fuel.2017.05.033
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The extent of hydraulic fracture vertical propagation extent is significant in evaluating simulated reservoir volume for laminated shale reservoirs. Given that it is affected by the discontinuities (beddings, natural fractures, and other factors), fracture geometry is complex in the vertical plane and is different from a simple fracture in a homogeneous sandstone reservoir. However, the propagation mechanism of hydraulic fracture in the vertical plane has not been well understood. To clarify this mechanism, several groups of large-scale tri-axial tests were deployed in this study to investigate the fracture initiation and vertical propagation behavior in laminated shale formation. The influences of multiple factors on fracture vertical propagation were studied. The results showed that hydraulic fracture initiation and propagation displayed five basic patterns in the vertical plane of laminated shale formation. The ultimate fracture geometries could be classified into four categories: simple fracture, fishbone-like fracture, fishbonelike fracture with fissure opening, and multilateral fishbone-like fracture network. Furthermore, the favorable geo-stress conditions for forming the complex fracture network were as follows: vertical stress difference close to 6 MPa and vertical stress difference coefficient from 0.2 to 0.5. In addition, when q . mu- value (the product of injection rate and fracturing fluid viscosity) was roughly 3 x 10(-9), a complex fracture geometry of fishbone-like fracture with bedding opening was formed; however, extremely small or extremely large values were both harmful. Variable injection rate fracturing with low viscosity fracturing fluid of 3 mPa.s was proved to be an effective treatment to improve the connectivity of induced hydraulic fracture with the discontinuities. Moreover, because of the influence of cementing strength on fracture communication effects between hydraulic fracture and the beddings, the overall propagation region generally displayed an ellipse in shape with beddings opening asymmetrically along two wings of the main hydraulic fracture. (C) 2017 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:482 / 493
页数:12
相关论文
共 50 条
  • [21] Experimental study on hydraulic fracture propagation behavior in heterogeneous shale formations
    Bin, Wang
    Tao, Jia
    Binggui, Xu
    Kun, Ning
    Peng, Tan
    Yi, Zhou
    FRONTIERS IN ENERGY RESEARCH, 2024, 11
  • [22] Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using XFEM-based CZM method
    Tan, Peng
    Jin, Yan
    Pang, Huiwen
    ENGINEERING FRACTURE MECHANICS, 2021, 248
  • [23] Experimental study of hydraulic fracture initiation and propagation in deep shale with different injection methods
    Chang, Xin
    Xu, Ersi
    Guo, Yintong
    Yang, Chunhe
    Hu, Zhiwen
    Guo, Wuhao
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 216
  • [24] EFFECT OF FLUID INJECTION STRATEGY ON HYDRAULIC FRACTURE INITIATION AND PROPAGATION IN SHALE GAS RESERVOIRS
    Zhang, Yanming
    Zhao, Zhenfeng
    Chen, Baochun
    Ma, Xinxing
    Wang, Wenxiong
    Wang, Jingyin
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (01): : 330 - 339
  • [25] Hydraulic Fracture Vertical Propagation Mechanism in Interlayered Brittle Shale Formations: An Experimental Investigation
    Zhang, Jun
    Yu, Qiangang
    Li, Yuwei
    Pan, Zhejun
    Liu, Bo
    ROCK MECHANICS AND ROCK ENGINEERING, 2023, 56 (01) : 199 - 220
  • [26] Hydraulic Fracture Vertical Propagation Mechanism in Interlayered Brittle Shale Formations: An Experimental Investigation
    Jun Zhang
    Qiangang Yu
    Yuwei Li
    Zhejun Pan
    Bo Liu
    Rock Mechanics and Rock Engineering, 2023, 56 : 199 - 220
  • [27] Experimental study on the hydraulic fracture propagation in shale
    Heng, Shuai
    Yang, Chunhe
    Wang, Lei
    Daemen, J. J. K.
    CURRENT SCIENCE, 2018, 115 (03): : 465 - 475
  • [28] Numerical investigation on the effect of well interference on hydraulic fracture propagation in shale formation
    Zheng, Heng
    Pu, Chunsheng
    Xu, Ersi
    Sun, Chao
    ENGINEERING FRACTURE MECHANICS, 2020, 228
  • [29] The Investigation on Initiation and Propagation of Hydraulic Fractures in Shale Reservoir
    Liu, Xiangjun
    Lei, Wei
    Huang, Jing
    Ding, Yi
    Liang, Lixi
    Xiong, Jian
    GEOFLUIDS, 2021, 2021
  • [30] Effect of heterogeneity and injection borehole location on hydraulic fracture initiation and propagation in shale gas reservoirs
    Wang, Chao
    Wang, J. G.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 96