A coherent quantum annealer with Rydberg atoms

被引:70
|
作者
Glaetzle, A. W. [1 ,2 ,3 ,4 ]
van Bijnen, R. M. W. [1 ,2 ]
Zoller, P. [1 ,2 ]
Lechner, W. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[3] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[4] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
欧洲研究理事会; 奥地利科学基金会; 欧盟地平线“2020”;
关键词
ARRAYS;
D O I
10.1038/ncomms15813
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is a significant ongoing effort in realizing quantum annealing with different physical platforms. The challenge is to achieve a fully programmable quantum device featuring coherent adiabatic quantum dynamics. Here we show that combining the well-developed quantum simulation toolbox for Rydberg atoms with the recently proposed Lechner-Hauke-Zoller (LHZ) architecture allows one to build a prototype for a coherent adiabatic quantum computer with all-to-all Ising interactions and, therefore, a platform for quantum annealing. In LHZ an infinite-range spin-glass is mapped onto the low energy subspace of a spin-1/2 lattice gauge model with quasi-local four-body parity constraints. This spin model can be emulated in a natural way with Rubidium and Caesium atoms in a bipartite optical lattice involving laser-dressed Rydberg-Rydberg interactions, which are several orders of magnitude larger than the relevant decoherence rates. This makes the exploration of coherent quantum enhanced optimization protocols accessible with state-of-the-art atomic physics experiments.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum simulation with N=19 Rydberg atoms for quantum Ising dynamics
    Kim, Hyosub
    Kim, Kyungtae
    Lee, Woojun
    Ahn, Jaewook
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [42] Special Issue on Optical Quantum Manipulation of Rydberg Atoms
    Yan, Dong
    Wu, Jin-Hui
    PHOTONICS, 2023, 10 (01)
  • [43] Problem of detection of Rydberg atoms and quantum information processing
    Tretyakov, D. B.
    Ryabtsev, I. I.
    Beterov, I. I.
    Entin, V. M.
    QUANTUM INFORMATICS 2007, 2008, 7023
  • [44] Bilayers of Rydberg Atoms as a Quantum Simulator for Unconventional Superconductors
    Hague, J. P.
    MacCormick, C.
    PHYSICAL REVIEW LETTERS, 2012, 109 (22)
  • [45] The corrections to quantum defect for high n Rydberg atoms
    Li, Chao
    Ma, Guo
    Wang, Bao
    Jia, Xiao
    Wang, Shengzhao
    OPTIK, 2021, 247
  • [46] Resilient quantum gates on periodically driven Rydberg atoms
    Wu, Jin-Lei
    Wang, Yan
    Han, Jin-Xuan
    Su, Shi-Lei
    Xia, Yan
    Jiang, Yongyuan
    Song, Jie
    PHYSICAL REVIEW A, 2021, 103 (01)
  • [47] Thermodynamics of a quantum annealer
    Buffoni, Lorenzo
    Campisi, Michele
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03):
  • [48] Quantum Computation in a Hybrid Array of Molecules and Rydberg Atoms
    Zhang, Chi
    Tarbutt, M. R.
    PRX QUANTUM, 2022, 3 (03):
  • [49] Quantum state swap for two trapped Rydberg atoms
    Wu Huai-Zhi
    Yang Zhen-Biao
    Zheng Shi-Biao
    CHINESE PHYSICS B, 2012, 21 (04)
  • [50] RYDBERG ATOMS AND RADIATION IN CAVITIES - QUANTUM AND COLLECTIVE EFFECTS
    HAROCHE, S
    GOY, P
    GROSS, M
    RAIMOND, JM
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1984, 1 (03) : 518 - 518